Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Chem ; 138: 106624, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37295238

RESUMEN

Nowadays, leishmaniasis is still treated with outdated drugs that present several obstacles related to their high toxicity, long duration, parenteral administration, high costs and drug resistance. Therefore, there is an urgent demand for safer and more effective novel drugs. Previous studies indicated that selenium compounds are promising derivatives for innovative therapy in leishmaniasis treatment. With this background, a new library of 20 selenocyanate and diselenide derivatives were designed based on structural features present in the leishmanicidal drug miltefosine. Compounds were initially screened against promastigotes of L. major and L. infantum and their cytotoxicity was evaluated in THP-1 cells. Compounds B8 and B9 were the most potent and less cytotoxic and were further screened for the intracellular back transformation assay. The results obtained revealed that B8 and B9 showed EC50 values of 7.7 µM and 5.7 µM, respectively, in L. major amastigotes, while they presented values of 6.0 µM and 7.4 µM, respectively, against L. infantum amastigotes. Furthermore, they exerted high selectivity (60 < SI > 70) towards bone marrow-derived macrophages. Finally, these compounds exhibited higher TryR inhibitory activity than mepacrine (IC50 7.6 and 9.2 µM, respectively), and induced nitric oxide (NO) and reactive oxygen species (ROS) production in macrophages. These results suggest that the compounds B8 and B9 could not only exert a direct leishmanicidal activity against the parasite but also present an indirect action by activating the microbicidal arsenal of the macrophage. Overall, these new generation of diselenides could constitute promising leishmanicidal drug candidates for further studies.


Asunto(s)
Antiprotozoarios , Leishmaniasis , Compuestos de Selenio , Animales , Ratones , Antiprotozoarios/química , Macrófagos , Leishmaniasis/tratamiento farmacológico , Compuestos de Selenio/farmacología , Ratones Endogámicos BALB C
2.
J Antimicrob Chemother ; 77(4): 1072-1081, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35086139

RESUMEN

OBJECTIVES: More effective topical treatments remain an unmet need for the localized forms of cutaneous leishmaniasis (CL). The aim of this study was to evaluate the efficacy and safety of a topical berberine cream in BALB/c mice infected with Leishmania major parasites. METHODS: A cream containing 0.5% berberine-ß-glycerophosphate salt and 2.5% menthol was prepared. Its physicochemical and stability properties were determined. The cream was evaluated for its capacity to reduce lesion size and parasitic load as well as to promote wound healing after twice-a-day administration for 35 days. Clinical biochemical profile was used for estimating off-target effects. In vitro time-to-kill curves in L. major-infected macrophages and skin and plasma pharmacokinetics were determined, aiming to establish pharmacokinetic/pharmacodynamic relationships. RESULTS: The cream was stable at 40°C for 3 months and at 4°C for at least 8 months. It was able to halt lesion progression in all treated mice. At the end of treatment, parasite load in the skin was reduced by 99.9% (4 log) and genes involved in the wound healing process were up-regulated compared with untreated mice.The observed effects were higher than expected from in vitro time-to-kill kinetic and plasma berberine concentrations, which ranged between 0.07 and 0.22 µM. CONCLUSIONS: The twice-a-day administration of a topical berberine cream was safe, able to stop parasite progression and improved the appearance of skin CL lesions. The relationship between drug plasma levels and in vivo effect was unclear.


Asunto(s)
Antiprotozoarios , Berberina , Leishmania major , Leishmaniasis Cutánea , Administración Tópica , Animales , Antiprotozoarios/farmacología , Berberina/uso terapéutico , Leishmaniasis Cutánea/parasitología , Ratones , Ratones Endogámicos BALB C
3.
Antimicrob Agents Chemother ; 65(10): e0059021, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34339279

RESUMEN

This work reports the synthesis and characterization by Fourier transform infrared spectroscopy (FTIR), 1H, 13C, and 79Se nuclear magnetic resonance (NMR), mass spectrometry, and elemental analysis techniques as well as the in vitro evaluation of the leishmanicidal activity of 13 new selenophosphoramidate derivatives. Among the new compounds, four of them (compounds 1f, 1g, 2f, and 2g), which exhibited the best profiles, were tested against infected macrophages and were selected for further studies related to their leishmanicidal mechanism. In this regard, trypanothione redox system alteration was determined. Compound 1g, under similar conditions, was more effective than the corresponding references. In addition, theoretical calculations showed that this compound also presents most physicochemical and pharmacokinetic properties within the ranges expected for orally available drugs. It is believed that selenophosphoramidate functionalities may represent a scaffold to be explored toward the development of new agents for leishmania treatment.


Asunto(s)
Antiprotozoarios , Leishmania , Preparaciones Farmacéuticas , Selenio , Amidas , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Ácidos Fosfóricos , Selenio/farmacología
4.
Artículo en Inglés | MEDLINE | ID: mdl-33046492

RESUMEN

Two new series of 28 selenocyanate and diselenide derivatives containing amide moieties were designed, synthesized, and evaluated for their leishmanicidal activity against Leishmania infantum axenic amastigotes, and selectivity was assessed in human THP-1 cells. Eleven compounds exhibited excellent leishmanicidal activity with EC50 values lower than the reference drug miltefosine (EC50 = 2.84 µM). In addition, for six of them the selectivity index ranged from 9 to >1,442, greater than both references used. The most potent and selective compounds were compounds 2h, 2k, and 2m that displayed EC50 values of 0.52, 1.19, and 0.50 µM, respectively, and a high selectivity index (SI) when tested against THP-1 monocytic cells (SI = >1,442, >672, and >1,100, respectively). These derivatives showed an efficacy similar to that of the reference drugs but much better SI values. They also showed interesting activity values against infected macrophages. Trypanothione reductase (TryR) activity and intracellular thiol level measurement assays were performed for the three best compounds in an attempt to elucidate their mechanism of action. Despite that the new analogs exhibited comparable or better inhibitory activities than the reference TryR inhibitors, more studies are necessary to confirm this result. In summary, our findings suggest that the three compounds described here could constitute leading leishmanicidal drug candidates.


Asunto(s)
Antiprotozoarios , Preparaciones Farmacéuticas , Selenio , Amidas , Antiprotozoarios/farmacología , Humanos , NADH NADPH Oxidorreductasas , Selenio/farmacología
5.
Bioorg Med Chem Lett ; 30(17): 127371, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32738977

RESUMEN

A series of thirty-one selenocompounds covering a wide chemical space was assessed for in vitro leishmanicidal activities against Leishmania infantum amastigotes. The cytotoxicity of those compounds was also evaluated on human THP-1 cells. Interestingly most tested derivatives were active in the low micromolar range and seven of them (A.I.3, A.I.7, B.I.1, B.I.2, C.I.7 C.I.8 and C.II.8) stood out for selectivity indexes higher than the ones exhibited by reference compounds mitelfosine and edelfosine. These leader compounds were evaluated against infected macrophages and their trypanothione reductase (TryR) inhibition potency was measured to further approach the mechanism by which they caused their action. Among them diselenide tested structures were pointed out for their ability to reduce infection rates. Three of the leader compounds inhibited TryR effectively, therefore this enzyme may be implicated in the mechanism of action by which these compounds cause their leishmanicidal effect.


Asunto(s)
Antiprotozoarios/farmacología , Cianatos/química , Leishmania infantum/efectos de los fármacos , Compuestos de Selenio/química , Antiprotozoarios/química , Supervivencia Celular/efectos de los fármacos , Cianatos/farmacología , Evaluación Preclínica de Medicamentos , Humanos , Leishmania infantum/fisiología , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , NADH NADPH Oxidorreductasas/metabolismo , Pruebas de Sensibilidad Parasitaria , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Compuestos de Selenio/farmacología , Relación Estructura-Actividad , Células THP-1
6.
Artículo en Inglés | MEDLINE | ID: mdl-30782984

RESUMEN

A novel series of thirty-one N-substituted urea, thiourea, and selenourea derivatives containing diphenyldiselenide entities were synthesized, fully characterized by spectroscopic and analytical methods, and screened for their in vitro leishmanicidal activities. The cytotoxic activity of these derivatives was tested against Leishmania infantum axenic amastigotes, and selectivity was assessed in human THP-1 cells. Thirteen of the synthesized compounds showed a significant antileishmanial activity, with 50% effective concentration (EC50) values lower than that for the reference drug miltefosine (EC50, 2.84 µM). In addition, the derivatives 9, 11, 42, and 47, with EC50 between 1.1 and 1.95 µM, also displayed excellent selectivity (selectivity index ranged from 12.4 to 22.7) and were tested against infected macrophages. Compound 11, a derivative with a cyclohexyl chain, exhibited the highest activity against intracellular amastigotes, with EC50 values similar to those observed for the standard drug edelfosine. Structure-activity relationship analyses revealed that N-aliphatic substitution in urea and selenourea is recommended for the leishmanicidal activity of these analogs. Preliminary studies of the mechanism of action for the hit compounds was carried out by measuring their ability to inhibit trypanothione reductase. Even though the obtained results suggest that this enzyme is not the target for most of these derivatives, their activity comparable to that of the standards and lack of toxicity in THP-1 cells highlight the potential of these compounds to be optimized for leishmaniasis treatment.


Asunto(s)
Antiprotozoarios/síntesis química , Antiprotozoarios/uso terapéutico , Leishmania infantum/efectos de los fármacos , Compuestos de Organoselenio/química , Tiourea/química , Urea/análogos & derivados , Urea/química , Antiprotozoarios/química , Humanos , Leishmania infantum/patogenicidad , Macrófagos/parasitología , NADH NADPH Oxidorreductasas/metabolismo , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad
7.
Artículo en Inglés | MEDLINE | ID: mdl-28320721

RESUMEN

The in vitro leishmanicidal activities of a series of 48 recently synthesized selenium derivatives against Leishmania infantum and Leishmania braziliensis parasites were tested using promastigotes and intracellular amastigote forms. The cytotoxicity of the tested compounds for J774.2 macrophage cells was also measured in order to establish their selectivity. Six of the tested compounds (compounds 8, 10, 11, 15, 45, and 48) showed selectivity indexes higher than those of the reference drug, meglumine antimonate (Glucantime), for both Leishmania species; in the case of L. braziliensis, compound 20 was also remarkably selective. Moreover, data on infection rates and amastigote numbers per macrophage showed that compounds 8, 10, 11, 15, 45, and 48 were the most active against both Leishmania species studied. The observed changes in the excretion product profile of parasites treated with these six compounds were also consistent with substantial cytoplasmic alterations. On the other hand, the most active compounds were potent inhibitors of Fe superoxide dismutase (Fe-SOD) in the two parasite species considered, whereas their impact on human CuZn-SOD was low. The high activity, low toxicity, stability, low cost of the starting materials, and straightforward synthesis make these compounds appropriate molecules for the development of affordable antileishmanicidal agents.


Asunto(s)
Antiprotozoarios/farmacología , Leishmania braziliensis/efectos de los fármacos , Leishmania infantum/efectos de los fármacos , Meglumina/farmacología , Compuestos Organometálicos/farmacología , Animales , Humanos , Leishmania braziliensis/metabolismo , Leishmania infantum/metabolismo , Antimoniato de Meglumina , Pruebas de Sensibilidad Parasitaria , Selenio/metabolismo , Superóxido Dismutasa/metabolismo
8.
Antimicrob Agents Chemother ; 60(6): 3802-12, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27067328

RESUMEN

A series of new selenocyanates and diselenides bearing interesting bioactive scaffolds (quinoline, quinoxaline, acridine, chromene, furane, isosazole, etc.) was synthesized, and their in vitro leishmanicidal activities against Leishmania infantum amastigotes along with their cytotoxicities in human THP-1 cells were determined. Interestingly, most tested compounds were active in the low micromolar range and led us to identify four lead compounds (1h, 2d, 2e, and 2f) with 50% effective dose (ED50) values ranging from 0.45 to 1.27 µM and selectivity indexes of >25 for all of them, much higher than those observed for the reference drugs. These active derivatives were evaluated against infected macrophages, and in order to gain preliminary knowledge about their possible mechanism of action, the inhibition of trypanothione reductase (TryR) was measured. Among these novel structures, compounds 1h (3,5-dimethyl-4-isoxazolyl selenocyanate) and 2d [3,3'-(diselenodiyldimethanediyl)bis(2-bromothiophene)] exhibited good association between TryR inhibitory activity and antileishmanial potency, pointing to 1h, for its excellent theoretical ADME (absorption, distribution, metabolism, and excretion) properties, as the most promising lead molecule for leishmancidal drug design.


Asunto(s)
Antiprotozoarios/farmacología , Cianatos/farmacología , Inhibidores Enzimáticos/farmacología , Leishmania infantum/efectos de los fármacos , Compuestos de Organoselenio/farmacología , Compuestos de Selenio/farmacología , Tiofenos/farmacología , Antiprotozoarios/síntesis química , Línea Celular , Cianatos/síntesis química , Inhibidores Enzimáticos/síntesis química , Expresión Génica , Humanos , Concentración 50 Inhibidora , Leishmania infantum/enzimología , Leishmania infantum/crecimiento & desarrollo , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Estructura Molecular , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Compuestos de Organoselenio/síntesis química , Pruebas de Sensibilidad Parasitaria , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Compuestos de Selenio/síntesis química , Relación Estructura-Actividad , Tiofenos/síntesis química
9.
Antimicrob Agents Chemother ; 59(9): 5705-13, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26149985

RESUMEN

The generation of new antileishmanial drugs has become a priority. Selenium and its derivatives stand out as having promising leishmanicidal activity. In fact, some parasites express selenoproteins and metabolize selenium. Recently, selenium derivatives have shown the potential to reduce parasitemia, clinical manifestations, and mortality in parasite-infected mice. In this paper, after selecting four candidates according to drug similarity parameters, we observed that two of them, called compounds 2b [methyl-N,N'-di(thien-2-ylcarbonyl)-imidoselenocarbamate] and 4b [methyl-N,N'-di(5-nitrothien-3-ylcarbonyl)-imidoselenocarbamate], exhibit low 50% inhibitory concentrations (IC50s) (<3 µM) and good selectivity indexes (SIs) (>5) in Leishmania major promastigotes and lack toxicity on macrophages. In addition, in analysis of their therapeutic potential against L. major in vitro infection, both compounds display a dramatic reduction of amastigote burden (∼80%) with sublethal concentrations. Furthermore, in macrophages, these selenocompounds induce nitric oxide production, which has been described to be critical for defense against intracellular pathogens. Compounds 2b and 4b were demonstrated to cause cell cycle arrest in G1. Interestingly, evaluation of expression of genes related to proliferation (PCNA), treatment resistance (ABC transporter and alpha-tubulin), and virulence (quinonoid dihydropteridine reductase [QDPR]) showed several alterations in gene expression profiling. All these results prompt us to propose both compounds as candidates to treat leishmanial infections.


Asunto(s)
Antiprotozoarios/uso terapéutico , Leishmania major/efectos de los fármacos , Leishmania major/patogenicidad , Leishmaniasis/tratamiento farmacológico , Animales , Línea Celular , Leishmaniasis/metabolismo , Ratones , Óxido Nítrico/metabolismo
10.
Nanomedicine ; 11(8): 2003-12, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26282379

RESUMEN

Patients affected by cutaneous leishmaniasis need a topical treatment which cures lesions without leaving scars. Lesions are produced not only by the parasite but also by an uncontrolled and persistent inflammatory immune response. In this study, we proposed the loading of ß-lapachone (ß-LP) in lecithin-chitosan nanoparticles (NP) for targeting the drug to the dermis, where infected macrophages reside, and promote wound healing. Although the loading of ß-LP in NP did not influence the drug antileishmanial activity it was critical to achieve important drug accumulation in the dermis and permeation through the skin. When topically applied in Leishmania major infected BALB/c mice, ß-LP NP achieved no parasite reduction but they stopped the lesion progression. Immuno-histopathological assays in CL lesions and quantitative mRNA studies in draining lymph nodes confirmed that ß-LP exhibited anti-inflammatory activity leading to the down-regulation of IL-1ß and COX-2 expression and a decrease of neutrophils infiltrate. FROM THE CLINICAL EDITOR: Cutaneous leishmaniasis often leaves patients with unsightly scars due to the body's inflammatory response to the infection. The authors in this paper described topical treatment using ß-lapachone (ß- LP) loaded in lecithin-chitosan nanoparticles (NP) in an animal model. Results confirmed the reduction of inflammatory response without affecting the parasite killing efficacy. These findings would pave way for further clinical testing in the near future.


Asunto(s)
Antiparasitarios/uso terapéutico , Portadores de Fármacos/química , Lecitinas/química , Leishmania major/efectos de los fármacos , Leishmaniasis Cutánea/tratamiento farmacológico , Nanopartículas/química , Naftoquinonas/uso terapéutico , Administración Tópica , Animales , Antiparasitarios/administración & dosificación , Quitosano/química , Sistemas de Liberación de Medicamentos , Leishmaniasis Cutánea/patología , Ratones Endogámicos BALB C , Naftoquinonas/administración & dosificación , Piel/parasitología , Piel/patología
11.
J Pharm Pharm Sci ; 17(4): 541-53, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25579433

RESUMEN

PURPOSE: The objective of this work was to evaluate the effect in the immune response produced by CpG oligodeoxynucleotides (ODN) co-encapsulated with the antigen ovalbumin (OVA) within poly(lactic-co-glycolic) acid (PLGA) 502 and 752 microparticles (MP). METHODS: MP were prepared by blending 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) with PLGA and Total Recirculation One Machine System (TROMS) technology and contained OVA along with CpG sequences associated to DOTAP. After confirming the integrity of both encapsulated molecules, BALB/c mice were immunized with the resulting MP and OVA-specific antibodies and cytokine production were assessed in order to determine the immunological profile induced in mice. RESULTS: One m near non-charged MP co-encapsulated very efficiently both OVA and CpG ODN. The release of both OVA and CpG was slow and incomplete irrespective of polymer. The results of the immune response induced in BALB/c mice indicated that, depending on the PLGA polymer used, co-encapsulation did not improve the immunogenicity of the antigen, compared either with the simply co-administration of both antigen and CpG, or with the microencapsulated antigen. Thus, mice immunized with OVA associated to PLGA 756 displayed an IgG2a characterized response which was biased to an IgG1 profile in case of CpG co-encapsulation. On the contrary, the co-encapsulation of CpG with OVA into PLGA 502 significantly improved the isotype shifting in comparison with the one showed by mice immunized with OVA loaded PLGA 502. CONCLUSION: This study underlines the importance of MP characteristics to fully exploit simultaneous antigen and CpG ODN particulate delivery as effective vaccine construct.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.


Asunto(s)
Ácido Láctico/química , Oligodesoxirribonucleótidos/inmunología , Ovalbúmina/inmunología , Ácido Poliglicólico/química , Vacunas/inmunología , Animales , Formación de Anticuerpos/inmunología , Antígenos/inmunología , Femenino , Inmunización , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microesferas , Oligodesoxirribonucleótidos/química , Ovalbúmina/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
12.
Drug Deliv Transl Res ; 14(5): 1189-1205, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37880504

RESUMEN

The oral administration of therapeutic proteins copes with important challenges (mainly degradation and poor absorption) making their potential therapeutic application extremely difficult. The aim of this study was to design and evaluate the potential of the combination between mucus-permeating nanoparticles and permeation enhancers as a carrier for the oral delivery of the monoclonal antibody bevacizumab, used as a model of therapeutic protein. For this purpose, bevacizumab was encapsulated in PEG-coated albumin nanoparticles as a hydrophobic ion-pairing complex with either sodium deoxycholate (DS) or sodium docusate (DOCU). In both cases, complex formation efficiencies close to 90% were found. The incorporation of either DS or DOCU in PEG-coated nanoparticles significantly increased their mean size, particularly when DOCU was used. Moreover, the diffusion in mucus of DOCU-loaded nanoparticles was significantly reduced, compared with DS ones. In a C. elegans model, DS or DOCU (free or nanoencapsulated) disrupted the intestinal epithelial integrity, but the overall survival of the worms was not affected. In rats, the relative oral bioavailability of bevacizumab incorporated in PEG-coated nanoparticles as a complex with DS (B-DS-NP-P) was 3.7%, a 1000-fold increase compared to free bevacizumab encapsulated in nanoparticles (B-NP-P). This important effect of DS may be explained not only by its capability to transiently disrupt tight junctions but also to their ability to increase the fluidity of membranes and to inhibit cytosolic and brush border enzymes. In summary, the current strategy may be useful to allow the therapeutic use of orally administered proteins, including monoclonal antibodies.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Ratas , Animales , Bevacizumab , Portadores de Fármacos/química , Caenorhabditis elegans , Nanopartículas/química , Albúminas , Moco/metabolismo , Administración Oral , Sistemas de Liberación de Medicamentos
13.
Nanomedicine ; 9(7): 985-95, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23603355

RESUMEN

We recently demonstrated that immunization with polyester poly(lactide-co-glycolide acid) (PLGA) nanoparticles loaded with the 11-kDa Leishmania vaccine candidate kinetoplastid membrane protein 11 (KMP-11) significantly reduced parasite load in vivo. Presently, we explored the ability of the recombinant PLGA nanoparticles to stimulate innate responses in macrophages and the outcome of infection with Leishmania braziliensis in vitro. Incubation of macrophages with KMP-11-loaded PLGA nanoparticles significantly decreased parasite load. In parallel, we observed the augmented production of nitric oxide, superoxide, TNF-α and IL-6. An increased release of CCL2/MCP-1 and CXCL1/KC was also observed, resulting in macrophage and neutrophil recruitment in vitro. Lastly, the incubation of macrophages with KMP-11-loaded PLGA nanoparticles triggered the activation of caspase-1 and the secretion of IL-1ß and IL-18, suggesting inflammasome participation. Inhibition of caspase-1 significantly increased the parasite load. We conclude that KMP-11-loaded PLGA nanoparticles promote the killing of intracellular Leishmania parasites through the induction of potent innate responses. FROM THE CLINICAL EDITOR: In this novel study, KMP-11-loaded PLGA nanoparticles are demonstrated to promote the killing of intracellular Leishmania parasites through enhanced innate immune responses by multiple mechanisms. Future clinical applications would have a major effect on our efforts to address parasitic infections.


Asunto(s)
Inmunidad Innata/inmunología , Ácido Láctico/química , Leishmania/citología , Leishmania/inmunología , Nanopartículas/química , Ácido Poliglicólico/química , Proteínas Protozoarias/inmunología , Animales , Muerte Celular/efectos de los fármacos , Quimiocinas/metabolismo , ADN/metabolismo , Femenino , Inmunidad Innata/efectos de los fármacos , Inflamasomas/metabolismo , Ácido Láctico/farmacología , Leishmania/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/parasitología , Macrófagos/patología , Ratones , Ratones Endogámicos BALB C , Óxido Nítrico/biosíntesis , Ácido Poliglicólico/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Superóxidos/metabolismo
14.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36558915

RESUMEN

The norbornene scaffold has arisen as a promising structure in medicinal chemistry due to its possible therapeutic application in cancer treatment. The development of norbornene-based derivatives as potential chemotherapeutic agents is attracting significant attention. Here, we report an unprecedented review on the recent advances of investigations into the antitumoral efficacy of different compounds, including the abovementioned bicyclic scaffold in their structure, in combination with chemotherapeutic agents or forming metal complexes. The impact that structural modifications to these bicyclic compounds have on the antitumoral properties and the mechanisms by which these norbornene derivatives act are discussed in this review. In addition, the use of norbornene, and its related compounds, encapsulation in nanosystems for its use in cancer therapies is here detailed.

15.
Pharmaceutics ; 14(11)2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-36432719

RESUMEN

The lack of safe and cost-effective treatments against leishmaniasis highlights the urgent need to develop improved leishmanicidal agents. Antimicrobial peptides (AMPs) are an emerging category of therapeutics exerting a wide range of biological activities such as anti-bacterial, anti-fungal, anti-parasitic and anti-tumoral. In the present study, the approach of repurposing AMPs as antileishmanial drugs was applied. The leishmanicidal activity of two synthetic anti-lipopolysaccharide peptides (SALPs), so-called 19-2.5 and 19-4LF was characterized in Leishmania major. In vitro, both peptides were highly active against intracellular Leishmania major in mouse macrophages without exerting toxicity in host cells. Then, q-PCR-based gene profiling, revealed that this activity was related to the downregulation of several genes involved in drug resistance (yip1), virulence (gp63) and parasite proliferation (Cyclin 1 and Cyclin 6). Importantly, the treatment of BALB/c mice with any of the two AMPs caused a significant reduction in L. major infective burden. This effect was associated with an increase in Th1 cytokine levels (IL-12p35, TNF-α, and iNOS) in the skin lesion and spleen of the L. major infected mice while the Th2-associated genes were downregulated (IL-4 and IL-6). Lastly, we investigated the effect of both peptides in the gene expression profile of the P2X7 purinergic receptor, which has been reported as a therapeutic target in several diseases. The results showed significant repression of P2X7R by both peptides in the skin lesion of L. major infected mice to an extent comparable to that of a common anti-leishmanial drug, Paromomycin. Our in vitro and in vivo studies suggest that the synthetic AMPs 19-2.5 and 19-4LF are promising candidates for leishmaniasis treatment and present P2X7R as a potential therapeutic target in cutaneous leishmaniasis (CL).

16.
Int J Pharm X ; 3: 100104, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34825166

RESUMEN

Camptothecin (CPT) exhibits a number of challenges for its oral administration, including a low aqueous solubility, a lactone ring susceptible to hydrolysis, and an affinity to the intestinal P-gp. The aim of this work was to evaluate nanoparticles from Gantrez-based conjugates as carriers for the oral delivery of CPT. For this purpose two different conjugates (G-mPEG and G-HPCD), obtained by the covalent binding of either HP-ß-CD or methoxy-PEG (m-PEG) to the polymer backbone of Gantrez™ AN, were synthetized and characterized. Both excipients (m-PEG and HPCD) were selected due to their reported abilities to stabilize the lactone ring of CPT and disturb the effect of intestinal P-gp. The resulting nanoparticles (G-mPEG-NP and G-HPCD-NP) presented a similar size (about 200 nm) and zeta potential (close to -35 mV); although, G-mPEG-NP presented a higher CPT payload than G-HPCD-NP. On the contrary, in rats, nanoparticles based on Gantrez conjugates appeared to be capable of crossing the protective mucus layer and reach the intestinal epithelium, whereas conventional Gantrez nanoparticles displayed a mucoadhesive profile. Finally, the pharmacokinetic study revealed that both formulations were able to enhance the relative oral bioavailability of CPT; although this value was found to be 2.6-times higher for G-mPEG-NP than for G-HPCD-NP.

17.
Nanoscale ; 13(41): 17486-17503, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34651151

RESUMEN

This study investigates if visceral leishmaniasis (VL) infection has some effects on the organ and cellular uptake and distribution of 100-200 nm near-infrared fluorescently labelled non-biodegradable polystyrene latex beads (PS NPs) or biodegradable polylactic-co-glycolic nanoparticles (PLGA NPs), as this parasitic infection produces morphological alterations in liver, spleen and bone marrow, organs highly involved in NP sequestration. The results showed that the magnitude of the effect was specific for each organ and type of NP. With the exception of the liver, the general trend was a decrease in NP organ and cellular uptake, mostly due to immune cell mobilization and/or weight organ gain, as vascular permeability was increased. Moreover, NPs redistributed among different phagocytic cells to adapt infection associated changes and cellular alterations. In the liver, it is noteworthy that only isolated Kuffer cells (KCs) captured NPs, whereas they were not taken up by KC forming granulomas. In the spleen, NPs redistributed from macrophages and dendritic cells towards B cells and inflammatory monocytes although they maintained their preferential accumulation in the marginal zone and red pulp. Comparatively, the infection rarely affected the NP cellular distribution in the bone marrow. NP cellular target changes in VL infection could affect their therapeutic efficacy and should be considered for more efficient drug delivery.


Asunto(s)
Nanopartículas , Enfermedades Parasitarias , Transporte Biológico , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Humanos , Monocitos
18.
Antioxidants (Basel) ; 10(4)2021 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-33920484

RESUMEN

Breast cancer is a multifactor disease, and many drug combination therapies are applied for its treatment. Selenium derivatives represent a promising potential anti-breast cancer treatment. This study reports the cytotoxic activity of forty-one amides and phosphoramidates containing selenium against five cancer cell lines (MCF-7, CCRF-CEM, HT-29, HTB-54 and PC-3) and two nonmalignant cell lines (184B5 and BEAS-2B). MCF-7 cells were the most sensitive and the selenoamides I.1f and I.2f and the selenium phosphoramidate II.2d, with GI50 values ranging from 0.08 to 0.93 µM, were chosen for further studies. Additionally, radical scavenging activity for all the compounds was determined using DPPH and ABTS colorimetric assays. Phosphoramidates turned out to be inactive as radical scavengers. No correlation was observed for the antioxidant activity and the cytotoxic effect, except for compounds I.1e and I.2f, which showed dual antioxidant and antitumor activity. The type of programmed cell death and cell cycle arrest were determined, and the results provided evidence that I.1f and I.2f induced cell death via autophagy, while the derivative II.2d provoked apoptosis. In addition, Western blot analysis corroborated these mechanisms with an increase in Beclin1 and LC3-IIB and reduced SQSTM1/p62 levels for I.1f and I.2f, as well as an increase in BAX, p21 and p53 accompanied by a decrease in BCL-2 levels for derivative II.2d.

19.
Acta Trop ; 215: 105801, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33352169

RESUMEN

Compounds 1 and 2 (selenocyanate and diselenide derivatives, respectively) were evaluated for their potential use in vivo against visceral leishmaniasis (VL). Both entities showed low cytoxicity in vitro in Vero and Caco-2 cell lines. However, the compounds were not suitable for their oral administration, since they exhibited poor values of intestinal permeability in vitro. Microsomal stability assays did not show any metabolite for compound 1 after 120 min, whereas 2 was highly metabolized by the enzyme CYP450. Thus, the in vivo efficacy of compound 1 was assessed in a murine model of L. infantum VL. The daily i.v. administration of 1 mg/kg of compound 1 during 5 consecutive days reduced parasite load in liver, spleen and bone marrow (99.2%, 91.7% and 61.4%, respectively) compared to non-treated mice. To the best of our knowledge, this is the first time that a selenium compound has been tested in vivo against VL. Thus, this work evidences the possible usefulness of selenocyanate derivatives for the treatment of this disease.


Asunto(s)
Cianatos/uso terapéutico , Leishmania infantum , Leishmaniasis Visceral/tratamiento farmacológico , Compuestos de Selenio/uso terapéutico , Animales , Células Cultivadas , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratas , Ratas Wistar
20.
ACS Infect Dis ; 7(6): 1727-1738, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33871252

RESUMEN

Chagas disease is a tropical infection caused by the protozoan parasite Trypanosoma cruzi and a global public health concern. It is a paradigmatic example of a chronic disease without an effective treatment. Current treatments targeting T. cruzi are limited to two obsolete nitroheterocyclic drugs, benznidazole and nifurtimox, which lead to serious drawbacks. Hence, new, more effective, safer, and affordable drugs are urgently needed. Selenium and their derivatives have emerged as an interesting strategy for the treatment of different prozotoan diseases, such as African trypanosomiasis, leishmaniasis, and malaria. In the case of Chagas disease, diverse selenium scaffolds have been reported with antichagasic activity in vitro and in vivo. On the basis of these premises, we describe the in vitro and in vivo trypanocidal activity of 41 selenocompounds against the three morphological forms of different T. cruzi strains. For the most active selenocompounds, their effect on the metabolic and mitochondrial levels and superoxide dismutase enzyme inhibition capacity were measured in order to determine the possible mechanism of action. Derivative 26, with a selenocyanate motif, fulfills the most stringent in vitro requirements for potential antichagasic agents and exhibits a better profile than benznidazole in vivo. This finding provides a step forward for the development of a new antichagasic agent.


Asunto(s)
Enfermedad de Chagas , Preparaciones Farmacéuticas , Selenio , Tripanocidas , Trypanosoma cruzi , Enfermedad de Chagas/tratamiento farmacológico , Humanos , Selenio/uso terapéutico , Tripanocidas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA