Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Ecol ; 32(19): 5241-5259, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37667619

RESUMEN

Resurrection experiments provide a unique opportunity to evaluate phenotypic and molecular evolution in response to environmental challenges. To understand the evolution of urban populations of Helianthus annuus, we compared plants from 36-year-old antecedent seed collections to modern seed collections from the same area using molecular and quantitative genetic approaches. We found 200 differentially expressed transcripts between antecedent and modern groups, and transcript expression was generally higher in modern samples as compared to antecedent samples. Admixture analysis indicated gene flow from domesticated to modern populations over time. After a greenhouse refresher generation, one antecedent-modern population pair was grown under two water availability (well-watered and drought) and temperature (ambient and elevated by 2.8°C) conditions reflecting historical and contemporary climates. Overall, 78% (7 out of 9) of traits differed between the antecedent and modern populations, with modern individuals displaying some trait changes that are coherent with climate changes expectations and some trait changes in the direction of crop varieties. Phenotypic selection analysis showed that modern trait values were often favoured by selection, especially in environmental treatments resembling modern conditions. Trait heritability in the antecedent population was five times as high as in the modern population, on average. In addition, phenotypic plasticity for some traits, such as flowering phenology, was present in the antecedent population but absent in the modern population. The combination of phenotypic and molecular information suggests that evolution has been influenced by crop-wild introgression, adaptive processes and drift. We discuss these results in the context of continued evolution in response to anthropogenic factors.

2.
Ecol Appl ; 30(5): e02092, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32058650

RESUMEN

Boreal forests are experiencing dramatic climate change, having warmed 1.0°-1.9°C over the last century. Yet forest regeneration practices are often still dictated by a fixed seed zone framework, in which seeds are both harvested from and planted into predefined areas. Our goal was to determine whether seedlings sourced from southern seed zones in Minnesota USA are already better adapted to northerly seed zones because of climate change. Bur oak (Quercus macrocarpa) and northern red oak (Quercus rubra) seedlings from two seed zones (i.e., tree ecotypes) were planted into 16 sites in two northern seed zones and measured for 3 yr. Our hypotheses were threefold: (1) tree species with more southern geographic distributions would thrive in northern forests where climate has already warmed substantially, (2) southern ecotypes of these species would have higher survival and growth than the northern ecotype in northern environments, and (3) natural selection would favor seedlings that expressed phenotypic and phenological traits characteristic of trees sourced from the more southern seed zone. For both species, survival was high (>93%), and southern ecotypes expressed traits consistent with our climate adaptation hypotheses. Ecotypic differences were especially evident for red oak; the southern ecotype had had higher survival, lower specific leaf area (SLA), faster height and diameter growth, and extended leaf phenology relative to the northern ecotype. Bur oak results were weaker, but the southern ecotype also had earlier budburst and lower SLA than the northern ecotype. Models based on the fixed seed zones failed to explain seedling performance as well as those with continuous predictors (e.g., climate and geographical position), suggesting that plant adaptations within current seed zone delineations do align with changing climate conditions. Adding support for this conclusion, natural selection favored traits expressed by the more southern tree ecotypes. Collectively, these results suggest that state seed sourcing guidelines should be reexamined to permit plantings across seed zones, a form of assisted migration. More extensive experiments (i.e., provenance trails) are necessary to make species-specific seed transfer guidelines that account for climate trends while also considering the precise geographic origin of seed sources.


Asunto(s)
Quercus , Árboles , Minnesota , Plantones , Semillas , Estados Unidos
3.
Am J Bot ; 106(3): 453-468, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30901496

RESUMEN

PREMISE OF THE STUDY: Polyploids possess unique attributes that influence their environmental tolerance and geographic distribution. It is often unknown, however, whether cytotypes within mixed-ploidy populations are also uniquely adapted and differ in their responses to environmental change. Here, we examine whether diploids and hexaploids from a single mixed-ploidy population of Solidago altissima differ in plasticity and potential response to natural selection under conditions simulating climate change. METHODS: Clonal replicates of diploid and hexaploid genotypes were grown in a randomized split-plot design under two temperature (+1.9°C) and two watering treatments (-13% soil moisture) implemented with open-top passive chambers placed under rainout shelters. Physiological, phenological, morphological traits, and a fitness correlate, reproductive biomass, were measured and compared among treatments. KEY RESULTS: Differences in traits suggest that diploids are currently better adapted to low- water availability than hexaploids. Both ploidy levels had adaptive plastic responses to treatments and are predicted to respond to selection, but often for different traits. Water availability generally had a stronger effect than temperature, but for some traits the effect of water depended on temperature. CONCLUSIONS: Diploid and hexaploid S. altissima may maintain fitness in the short term through adaptive plasticity and evolution depending on which traits are important in a warmer, drier environment. Hexaploids may be at a disadvantage compared to diploids because fewer traits were heritable. Our results underscore the importance of studying combinations of climate variables that are predicted to change simultaneously.


Asunto(s)
Adaptación Fisiológica , Cambio Climático , Variación Genética , Selección Genética , Solidago/fisiología , Diploidia , Poliploidía , Solidago/genética
4.
J Plant Res ; 132(1): 57-67, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30554369

RESUMEN

The mating systems of wild plant populations have profound effects on their genetic structure and evolution, yet remain unknown or incompletely described for many species. One such species, the herbaceous native annual Linum sulcatum Riddell (Linaceae), is thought to be self-compatible, but there has been no experimental evidence to date to support this claim. To assess the breeding system of this species, seeds were collected from wild populations and reared in a controlled environment. Floral manipulations and controlled pollinations were conducted to determine the degree of self-compatibility of this species and to distinguish between autonomous and facilitated modes of selfing. Additional controlled within- and between-population crosses were conducted to determine the relative degree to which this species can outcross. This study showed that self-fertilization was highly successful and can occur autonomously. In contrast, outcrossing success, both within and between populations, was very limited, suggesting this species may exhibit an extreme degree of cross-incompatibility. A pollen tube growth experiment showed that self-pollination resulted in the formation of more pollen tubes relative to cross-pollination and that complete pollen tube growth can occur less than 2 h following self-pollination. This information is relevant to the future persistence of this species, as much of its remaining habitat is distributed among small, highly fragmented patches subjected to current and future environmental stressors.


Asunto(s)
Lino/fisiología , Polinización , Autofecundación , Medio Oeste de Estados Unidos
5.
Mol Ecol ; 27(9): 2176-2192, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29577469

RESUMEN

The impacts of drought are expanding worldwide as a consequence of climate change. However, there is still little knowledge of how species respond to long-term selection in seasonally dry ecosystems. In this study, we used QST -FST comparisons to investigate (i) the role of natural selection on population genetic differentiation for a set of functional traits related to drought resistance in the seasonally dry tropical oak Quercus oleoides and (ii) the influence of water availability at the site of population origin and in experimental treatments on patterns of trait divergence. We conducted a thorough phenotypic characterization of 1912 seedlings from ten populations growing in field and greenhouse common gardens under replicated watering treatments. We also genotyped 218 individuals from the same set of populations using eleven nuclear microsatellites. QST distributions for leaf lamina area, specific leaf area, leaf thickness and stomatal pore index were higher than FST distribution. Results were consistent across growth environments. Genetic differentiation among populations for these functional traits was associated with the index of moisture at the origin of the populations. Together, our results suggest that drought is an important selective agent for Q. oleoides and that differences in length and severity of the dry season have driven the evolution of genetic differences in functional traits.


Asunto(s)
Flujo Genético , Quercus/genética , Agua/metabolismo , Cambio Climático , Sequías , Estudios de Asociación Genética , Fenotipo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Quercus/anatomía & histología , Quercus/metabolismo , Estaciones del Año , Plantones/anatomía & histología , Plantones/genética , Plantones/metabolismo , Selección Genética
6.
Am J Bot ; 103(1): 5-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26772310

RESUMEN

In an age of rapid global change, it is imperative that we continue to improve our understanding of factors that govern genetic differentiation in plants to inform biologically reasonable predictions for the future and enlighten conservation and restoration practices. In this special issue, we have assembled a set of original research and reviews that employ diverse approaches, both classic and contemporary, to illuminate patterns of phenotypic and genetic variation, probe the underlying evolutionary processes that have contributed to these patterns, build predictive models, and test evolutionary hypotheses. Our goal was to underscore the unique insights that can be obtained through the complementary and distinct studies of plant populations across species' geographic ranges.


Asunto(s)
Evolución Biológica , Variación Genética , Plantas/genética , Fenotipo
7.
Am J Bot ; 103(8): 1407-19, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27539263

RESUMEN

PREMISE OF THE STUDY: Reproductive phenology is important for tree species that occur in seasonally dry environments, particularly for those with desiccation-sensitive, nondormant seeds. In this study, we compared germination, growth, and survival of seeds of the evergreen tropical live oak Quercus oleoides produced at different times during the wet season at two sites that differ in rainfall along an elevation gradient. Our goal was to determine the effects of reproductive timing on germination and juvenile fitness for this widespread species in seasonally dry forests of northwestern Costa Rica. METHODS: We collected seeds early and late in a single wet season from two populations with contrasting rainfall and reciprocally planted them into common gardens. Two watering treatments (ambient and supplemental watering) were established at the drier low-elevation garden. Seeds were exposed to ambient rainfall at the wetter high-elevation garden. We conducted selection analyses using aster models to examine variation in selection on seed size and timing of germination. KEY RESULTS: Trees of Q. oleoides had higher fitness when seeds were produced, dispersed and germinated late in the wet season. Postgermination, water limitation during the dry season reduced seedling fitness by decreasing survival but not growth. CONCLUSIONS: In contrast to studies in temperate climates where earlier germination is typically favored, we show that selection on days to germination is temporally and spatially heterogeneous. Selection was found to favor either rapid or delayed germination depending on seed cohort and habitat.


Asunto(s)
Aptitud Genética , Quercus/fisiología , Semillas/fisiología , Costa Rica , Quercus/crecimiento & desarrollo , Reproducción , Estaciones del Año , Plantones/crecimiento & desarrollo , Clima Tropical
8.
Am J Bot ; 103(1): 22-32, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26507110

RESUMEN

PREMISE OF THE STUDY: Although our awareness of ploidy diversity has expanded with the application of flow cytometry, we still know little about the extent to which cytotypes within mixed-ploidy populations are genetically differentiated across environmental gradients. METHODS: To address this issue, we reared 14 populations of Solidago altissima spanning the prairie-forest ecotone in Minnesota in a common garden with a watering treatment. We assessed ploidy frequencies and measured survival, flowering phenology, and plant architectural traits for 4 years. KEY RESULTS: All populations harbored multiple cytotypes; prairie populations were dominated by tetraploids, forest populations by hexaploids. Diploids and polyploids differed significantly for 84% of the traits. Beyond average differences, the slope of trait values covaried with latitude and longitude, but this relationship was stronger for diploids than the other two polyploid cytotypes as indicated by numerous ploidy × latitude and ploidy × longitude interactions. For example, the timing of flowering of the cytotypes overlapped in populations sampled from the northeastern hemiboreal forest but differed significantly between cytotypes sampled from populations in the southwestern prairie. The watering treatments had weak effects, and there were no ploidy differences for phenotypic plasticity. CONCLUSIONS: Our data show that diploids have diverged genetically to a greater extent than polyploids along the environmental clines sampled in this study. Moreover, different environments favor phenotypic convergence over divergence among cytotypes for some traits. Differences in ploidy frequency and phenotypic divergence among cytotypes across gradients of temperature and precipitation are important considerations for restoration in an age of climate change.


Asunto(s)
Bosques , Variación Genética , Genoma de Planta , Pradera , Ploidias , Solidago/genética , Cambio Climático , Minnesota , Lluvia , Nieve , Temperatura
9.
Am J Bot ; 103(1): 60-72, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26758888

RESUMEN

PREMISE OF THE STUDY: Seed size is a critical life history attribute with fitness effects that cascade throughout the lifespan of plants. Interspecific studies repeatedly report a negative correlation between seed mass and latitude. Yet, despite its importance, little is known about geographic variation in seed size within species' ranges. METHODS: To improve our understanding of intraspecific geographic variation in seed size, we collected and weighed seeds by maternal line from 8 to 17 populations of seven herbaceous plant species spanning large geographic areas, and measured a dispersal trait, awn length, for two grass species. We examined the overall relationship between seed mass and latitude, then divided the data into species-specific subsets to compare the fit of three models to explain seed mass and awn length: (1) latitude and longitude, (2) long-term climate, and (3) collection-year weather. KEY RESULTS: Like previous work, we found a negative relationship between interspecific seed mass and latitude. However, the best-fit models explaining seed size and awn length differed between individual species and often included significant interaction terms. For all species, the best model was either long-term or collection-year climate data instead of latitude and longitude. CONCLUSIONS: Intraspecific geographic patterns for seed traits were remarkably inconsistent, covarying both negatively and positively with temperature and precipitation. The only apparent generalization is that annual species' seed mass corresponded more with collection-year weather while perennial species covaried more with long-term climate. Overall, this study suggests that the scale of climate variation that molds seed traits is highly species-specific.


Asunto(s)
Clima , Magnoliopsida/fisiología , Dispersión de las Plantas , Magnoliopsida/genética , Semillas/fisiología , Especificidad de la Especie
10.
Am J Bot ; 103(1): 164-73, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26772308

RESUMEN

PREMISE OF THE STUDY: Project Baseline is a seed bank that offers an unprecedented opportunity to examine spatial and temporal dimensions of microevolution during an era of rapid environmental change. Over the upcoming 50 years, biologists will withdraw genetically representative samples of past populations from this time capsule of seeds and grow them contemporaneously with modern samples to detect any phenotypic and molecular evolution that has occurred during the intervening time. METHODS: We carefully developed this living genome bank using protocols to enhance its experimental value by collecting from multiple populations and species across a broad geographical range in sites that are likely to be preserved into the future. Seeds are accessioned with site and population data and are stored by maternal line under conditions that maximize seed longevity. This open-access resource will be available to researchers at regular intervals to evaluate contemporary evolution. KEY RESULTS: To date, the Project Baseline collection includes 100-200 maternal lines of each of 61 species collected from over 831 populations on sites that are likely to be preserved into the future across the United States (∼78,000 maternal lines). Our strategically designed collection circumvents some problems that can cloud the results of "resurrection" studies involving naturally preserved or existing seed collections that are available fortuitously. CONCLUSIONS: The resurrection approach can be coupled with long-established and newer techniques over the next five decades to elucidate genetic change and thereby vastly improve our understanding of temporal and spatial changes in phenotype and the evolutionary processes underlying it.


Asunto(s)
Evolución Biológica , Magnoliopsida/genética , Fenotipo , Banco de Semillas , Evolución Molecular , Genoma de Planta , Geografía , Semillas/genética
11.
New Phytol ; 195(4): 752-765, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22816320

RESUMEN

Evolution proceeds unceasingly in all biological populations. It is clear that climate-driven evolution has molded plants in deep time and within extant populations. However, it is less certain whether adaptive evolution can proceed sufficiently rapidly to maintain the fitness and demographic stability of populations subjected to exceptionally rapid contemporary climate change. Here, we consider this question, drawing on current evidence on the rate of plant range shifts and the potential for an adaptive evolutionary response. We emphasize advances in understanding based on theoretical studies that model interacting evolutionary processes, and we provide an overview of quantitative genetic approaches that can parameterize these models to provide more meaningful predictions of the dynamic interplay between genetics, demography and evolution. We outline further research that can clarify both the adaptive potential of plant populations as climate continues to change and the role played by ongoing adaptation in their persistence.


Asunto(s)
Adaptación Fisiológica/genética , Cambio Climático , Plantas/genética , Evolución Biológica , Aptitud Genética , Variación Genética
12.
Proc Natl Acad Sci U S A ; 106(24): 9721-4, 2009 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-19509337

RESUMEN

Managed relocation (MR) has rapidly emerged as a potential intervention strategy in the toolbox of biodiversity management under climate change. Previous authors have suggested that MR (also referred to as assisted colonization, assisted migration, or assisted translocation) could be a last-alternative option after interrogating a linear decision tree. We argue that numerous interacting and value-laden considerations demand a more inclusive strategy for evaluating MR. The pace of modern climate change demands decision making with imperfect information, and tools that elucidate this uncertainty and integrate scientific information and social values are urgently needed. We present a heuristic tool that incorporates both ecological and social criteria in a multidimensional decision-making framework. For visualization purposes, we collapse these criteria into 4 classes that can be depicted in graphical 2-D space. This framework offers a pragmatic approach for summarizing key dimensions of MR: capturing uncertainty in the evaluation criteria, creating transparency in the evaluation process, and recognizing the inherent tradeoffs that different stakeholders bring to evaluation of MR and its alternatives.


Asunto(s)
Biodiversidad , Animales , Incertidumbre
13.
Evol Appl ; 14(7): 1816-1829, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34295366

RESUMEN

Native seed for restoration is in high demand, but widespread habitat degradation will likely prevent enough seed from being sustainably harvested from wild populations to meet this need. While propagation of native species has emerged in recent decades to address this resource gap, few studies have tested whether the processes of sampling from wild populations, followed by generations of farm cultivation, reduce plant fitness tolerance to stress over time. To test this, we grew the eighth generation of farm-propagated Clarkia pulchella Pursh (Onagraceae) alongside seeds from two of the three original wild source populations that established the native seed farm. To detect differences in stress tolerance, half of plants were subjected to a low-water treatment in the greenhouse. At the outset, farmed seeds were 4.1% heavier and had 4% greater germination compared to wild-collected seed. At maturity, farmed plants were 22% taller and had 20% larger stigmatic surfaces, even after accounting for differences in initial seed size. Importantly, the mortality of farmed plants was extremely high (75%), especially in the low-water treatment (80%). Moreover, farmed plants under the high-water treatment had 90% lower relative fitness than wild plants due to the 1.3 times greater weekly mortality and a 3-fold reduction in flowering likelihood. Together, these data suggest that bottlenecks during initial sampling and/or unconscious selection during propagation severely reduced genetic diversity and promoted inbreeding. This may undermine restoration success, especially under stressful conditions. These results indicate that more data must be collected on the effects of cultivation to determine whether it is a suitable source of restoration seed.

14.
New Phytol ; 182(4): 1003-1012, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19320836

RESUMEN

Plants exhibit plasticity in response to their current environment and, in some cases, to that of the previous generation (i.e. maternal effects). However, few studies have evaluated both within- and between-generation plasticities and the extent to which they interact to influence fitness, especially in natural environments. The plasticity of adult traits to two generations of natural differences in light was determined for Campanulastrum americanum, a forest-edge herb that expresses annual and biennial life histories. Plasticity was found to an individual's light environment (within generation) and the maternal light environment (between generations). Responses to ambient light for size traits and timing of flowering were probably passive, whereas apparently adaptive responses were found for light acquisition traits. Maternal light influenced the expression of most adult traits but had the strongest effect when plants were germinated in natural environments. The transgenerational effects of light were consistent with adaptive plasticity for several traits. Plastic within-generation changes in flowering time may also result in adaptive between-generation effects by altering the offspring life history schedule. Finally, the results underscore the importance of conducting studies of within- and between-generation plasticity in natural populations, where the environmental context is relevant to that in which the traits evolved.


Asunto(s)
Campanulaceae/crecimiento & desarrollo , Hojas de la Planta/fisiología , Biomasa , Campanulaceae/genética , Campanulaceae/efectos de la radiación , Flores/fisiología , Flores/efectos de la radiación , Análisis de los Mínimos Cuadrados , Luz , Hojas de la Planta/anatomía & histología , Hojas de la Planta/efectos de la radiación , Carácter Cuantitativo Heredable , Semillas/crecimiento & desarrollo , Semillas/efectos de la radiación
15.
New Phytol ; 183(3): 826-838, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19572917

RESUMEN

Maternal effects are ubiquitous in nature. In plants, most work has focused on the effects of maternal environments on offspring trait expression. Less is known about the prevalence of genetic maternal effects and how they influence adaptive evolution. Here, we used multivariate genetic models to estimate the contributions of maternal and direct genetic (co)variance, the cross-generation direct-maternal covariance, and M, the matrix of maternal effect coefficients, for life-history traits in Campanulastrum americanum, a monocarpic herb. Following a three-generation breeding design, we grew paternal half-sib families with full-sib relatives of each parent and measured juvenile and adult traits. Seed size was influenced exclusively by maternal environmental effects, whereas maternal genetic effects influenced traits throughout the life cycle, including strong direct and maternal additive genetic correlations within and between generations for phenological and size traits. Examination of M suggested that both juvenile and adult traits in maternal plants influenced the expression of offspring traits. This study reveals substantial potential for genetic maternal effects to contribute to adaptive evolution including cross-generation direct-maternal correlations that may slow selection response, maternal effects on phenology that reinforce genetic correlations, and within- and between-generation genetic correlations that may influence life-history polymorphism.


Asunto(s)
Evolución Biológica , Campanulaceae/genética , Patrón de Herencia/genética , Modelos Genéticos , Análisis Multivariante , Fenotipo , Carácter Cuantitativo Heredable
16.
Tree Physiol ; 39(3): 427-439, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30321394

RESUMEN

Heritable variation in polygenic (quantitative) traits is critical for adaptive evolution and is especially important in this era of rapid climate change. In this study, we examined the levels of quantitative genetic variation of populations of the tropical tree Quercus oleoides Cham. and Schlect. for a suite of traits related to resource use and drought resistance. We tested whether quantitative genetic variation differed across traits, populations and watering treatments. We also tested potential evolutionary factors that might have shaped such a pattern: selection by climate and genetic drift. We measured 15 functional traits on 1322 1-year-old seedlings of 84 maternal half-sib families originating from five populations growing under two watering treatments in a greenhouse. We estimated the additive genetic variance, coefficient of additive genetic variation and narrow-sense heritability for each combination of traits, populations and treatments. In addition, we genotyped a total of 119 individuals (with at least 20 individuals per population) using nuclear microsatellites to estimate genetic diversity and population genetic structure. Our results showed that gas exchange traits and growth exhibited strikingly high quantitative genetic variation compared with traits related to leaf morphology, anatomy and photochemistry. Quantitative genetic variation differed between populations even at geographical scales as small as a few kilometers. Climate was associated with quantitative genetic variation, but only weakly. Genetic structure and diversity in neutral markers did not relate to coefficient of additive genetic variation. Our study demonstrates that quantitative genetic variation is not homogeneous across traits and populations of Q. oleoides. More importantly, our findings suggest that predictions about potential responses of species to climate change need to consider population-specific evolutionary characteristics.


Asunto(s)
Evolución Biológica , Sequías , Variación Genética , Rasgos de la Historia de Vida , Quercus/fisiología , Cambio Climático , Genotipo , Fenotipo , Quercus/genética , Quercus/crecimiento & desarrollo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/fisiología
17.
Am Nat ; 172(1): E35-47, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18500940

RESUMEN

The lifetime fitnesses of individuals comprising a population determine its numerical dynamics, and genetic variation in fitness results in evolutionary change. This dual importance of individual fitness is well understood, but empirical fitness records generally violate the assumptions of standard statistical approaches. This problem has undermined comprehensive study of fitness and impeded empirical synthesis of the numerical and genetic dynamics of populations. Recently developed aster models remedy this problem by explicitly modeling the dependence of later-expressed components of fitness (e.g., fecundity) on those expressed earlier (e.g., survival to reproduce). Moreover, aster models employ different sampling distributions for different components of fitness (e.g., binomial for survival over a given interval and Poisson for fecundity). Analysis is done by maximum likelihood, and the resulting distributions for lifetime fitness closely approximate observed data. We illustrate the breadth of aster models' utility with three examples demonstrating estimation of the finite rate of increase, comparison of mean fitness among genotypic groups, and analysis of phenotypic selection. Aster models offer a unified approach to addressing the breadth of questions in evolution and ecology for which life-history data are gathered.


Asunto(s)
Áfidos/fisiología , Chamaecrista/parasitología , Echinacea/parasitología , Animales , Ecosistema , Interacciones Huésped-Parásitos , Longevidad , Modelos Biológicos , Crecimiento Demográfico , Reproducción/fisiología , Semillas/fisiología , Factores de Tiempo
18.
Evolution ; 61(11): 2671-83, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17908243

RESUMEN

The consequences of combining divergent genomes among populations of a diploid species often involve F1 hybrid vigor followed by hybrid breakdown in later recombinant generations. As many as 70% of plant species are thought to have polyploid origins; yet little is known about the genetic architecture of divergence in polyploids and how it may differ from diploid species. We investigated the genetic architecture of population divergence using controlled crosses among five populations of the autotetraploid herb, Campanulastrum americanum. Plants were reciprocally hybridized to produce F1, F2, and F1-backcross generations that were grown with parental types in a greenhouse and measured for performance. In contrast to diploid expectations, most F1 hybrids lacked heterosis and instead showed strong outbreeding depression for early life traits. Recombinant hybrid generations often showed a recovery of performance to levels approximating, or at times even exceeding, the parental values. This pattern was also evident for an index of cumulative fitness. Analyses of line means indicated nonadditive gene action, especially forms of digenic epistasis, often influenced hybrid performance. However, standard diploid genetic models were not adequate for describing the underlying genetic architecture in a number of cases. Differences between reciprocal hybrids indicated that cytoplasmic and/or cytonuclear interactions also contributed to divergence. An enhanced role of epistasis in population differentiation may be the norm in polyploids, which have more gene copies. This study, the first of its kind on a natural autotetraploid, suggests that gene duplication may cause polyploid populations to diverge in a fundamentally different way than diploids.


Asunto(s)
Cruzamiento , Campanulaceae , Epistasis Genética , Poliploidía , Evolución Biológica , Campanulaceae/genética , Campanulaceae/fisiología , Cruzamientos Genéticos , Citoplasma/fisiología , Ambiente , Hibridación Genética , Fenómenos Fisiológicos de las Plantas , Dinámica Poblacional
19.
Front Plant Sci ; 8: 585, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28536582

RESUMEN

Widely distributed species are normally subjected to spatial heterogeneity in environmental conditions. In sessile organisms like plants, adaptive evolution and phenotypic plasticity of key functional traits are the main mechanisms through which species can respond to environmental heterogeneity and climate change. While extended research has been carried out in temperate species in this regard, there is still limited knowledge as to how species from seasonally-dry tropical climates respond to spatial and temporal variation in environmental conditions. In fact, studies of intraspecific genetically-based differences in functional traits are still largely unknown and studies in these ecosystems have largely focused on in situ comparisons where environmental and genetic effects cannot be differentiated. In this study, we tested for ecotypic differentiation and phenotypic plasticity in leaf economics spectrum (LES) traits, water use efficiency and growth rates under natural and manipulated precipitation regimes in a common garden experiment where seedlings of eight populations of the neotropical live oak Quercus oleoides were established. We also examined the extent to which intraspecific trait variation was associated with plant performance under different water availability. Similar to interspecific patterns among seasonally-dry tropical tree species, live oak populations with long and severe dry seasons had higher leaf nitrogen content and growth rates than mesic populations, which is consistent with a "fast" resource-acquisition strategy aimed to maximize carbon uptake during the wet season. Specific leaf area (SLA) was the best predictor of plant performance, but contrary to expectations, it was negatively associated with relative and absolute growth rates. This observation was partially explained by the negative association between SLA and area-based photosynthetic rates, which is contrary to LES expectations but similar to other recent intraspecific studies on evergreen oaks. Overall, our study shows strong intraspecific differences in functional traits in a tropical oak, Quercus oleoides, and suggests that precipitation regime has played an important role in driving adaptive divergence in this widespread species.

20.
Evolution ; 58(7): 1446-58, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15341148

RESUMEN

Climate change will alter natural selection on native plant populations. Little information is available to predict how selection will change in the future and how populations will respond. Insight can be obtained by comparing selection regimes in current environments to selection regimes in environments similar to those predicted for the future. To mimic predicted temporal change in climate, three natural populations of the annual legume Chamaecrista fasciculata were sampled from a climate gradient in the Great Plains and progeny of formal crosses were reciprocally planted back into common gardens across this climate gradient. In each garden, native populations produced significantly more seed than the other populations, providing strong evidence of local adaptation. Phenotypic selection analysis conducted by site showed that plants with slower reproductive development, more leaves, and thicker leaves were favored in the most southern garden. Evidence of clinal variation in selection regimes was also found; selection coefficients were ordered according to the latitude of the common gardens. The adaptive value of native traits was indicated by selection toward the mean of local populations. Repeated clinal patterns in linear and nonlinear selection coefficients among populations and within and between sites were found. To the extent that temporal change in climate into the future will parallel the differences in selection across this spatial gradient, this study suggests that selection regimes will be displaced northward and different trait values will be favored in natural populations.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Biológica , Chamaecrista/genética , Clima , Ambiente , Selección Genética , Análisis de Varianza , Chamaecrista/anatomía & histología , Chamaecrista/fisiología , Cruzamientos Genéticos , Geografía , Análisis de los Mínimos Cuadrados , Medio Oeste de Estados Unidos , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA