Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Heart Fail Rev ; 27(6): 2137-2153, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35133552

RESUMEN

Almost 200 years ago, the first evidence described by Robert Bright (1836) showed the strong interaction between the kidneys and heart and, since then, the scientific community has dedicated itself to better understanding the mechanisms involved in the kidney-heart relationship, known in recent decades as cardiorenal syndrome (CRS). This syndrome includes a wide clinical variety that affects the kidneys and heart, in an acute or chronic manner. Moreover, it is well established in the literature that the immune system, the sympathetic nervous system, the renin-angiotensin-aldosterone, and the oxidative stress actively play a strong role in the cellular and molecular processes present in CRS. More recently, uremic molecules and epigenetic factors have been also shown to be key mediators in the development of syndrome. The present review intends to present the state of the art regarding CRS and to show the paths known, until now, in the long road between the kidneys and heart.


Asunto(s)
Síndrome Cardiorrenal , Aldosterona , Angiotensinas , Humanos , Riñón , Renina
2.
Purinergic Signal ; 18(1): 123-133, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34741235

RESUMEN

Breast cancer (BC) is a public health problem worldwide, causing suffering and premature death among women. As a heterogeneous disease, BC-specific diagnosis and treatment are challenging. Ectonucleotidases are related to tumor development and their expression may vary among BC. miRNAs may participate in epigenetic events and may regulate ectonucleotidases in BC. This study aimed to evaluate the expression of ectonucleotidases according to BC subtypes and to predict if there is post-transcriptional regulation of them by miRNAs. MCF 10A (non-tumorigenic), MCF7 (luminal BC), and MDA-MB-231 (triple-negative BC - TNBC) breast cell lines were used and ENTPD1 (the gene encoding for NTPDase1) and NT5E (the gene encoding for ecto-5'-nucleotidase) gene expression was determined. Interestingly, the expression of ENTPD1 was only observed in MCF7 and NT5E was lower in MCF7 compared to MDA-MB-231 cell line. ATP, ADP, and AMP hydrolysis were observed on the surface of all cell lines, being higher in MDA-MB-231. Like qPCR, the activity of AMP hydrolysis was also lower in the MCF7 cells, which may represent a striking feature of this BC subtype. In silico analyses confirmed that the miRNAs miR-101-3p, miR-141-3p, and miR-340-5p were higher expressed in MCF7 cells and targeted NT5E mRNA. Altogether, data suggest that the regulation of NT5E by miRNAs in MCF7 lineage may direct the molecular profile of luminal BC. Thus, we suggest that the roles of ecto-5'-nucleotidase and the aforementioned miRNAs must be unraveled in TNBC to be possibly defined as diagnostic and therapeutic targets.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Neoplasias de la Mama Triple Negativas , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , Antígenos CD , Apirasa , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , MicroARNs/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología
3.
Neurochem Res ; 43(4): 894-903, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29411263

RESUMEN

Naringenin (NGN; 5,7-dihydroxy-2-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one; C15H12O5), a flavanone, is found in citrus fruits and has been viewed as an antioxidant and anti-inflammatory agent. NGN is a potent inducer of the nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulates the expression of heme oxygenase-1 (HO-1), an enzyme exhibiting both antioxidant and anti-inflammatory effects. The complete mechanism by which NGN exerts anti-inflammatory actions is not completely understood yet. Therefore, we investigated here whether NGN would be able to reduce the inflammation induced by paraquat (PQ) in SH-SY5Y cells. Additionally, we analyzed the mechanism associated with the NGN-induced anti-inflammatory effect. We found that a pretreatment with NGN at 80 µM for 2 h decreased the levels of pro-inflammatory cytokines interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) in PQ-treated SH-SY5Y cells. The production of nitric oxide (NO·) and levels of cyclooxygenase-2 (COX-2) and of the inducible isoform of nitric oxide synthase (iNOS) were downregulated by NGN in the cells exposed to PQ. Moreover, NGN downregulated the activation of the nuclear factor-κB (NF-κB) in PQ-treated cells. The anti-apoptotic and anti-inflammatory effects promoted by NGN were abolished by ZnPP IX (a specific inhibitor of HO-1) or by knockdown of Nrf2 by small interfering RNA (siRNA). Therefore, NGN induced anti-inflammatory effects in PQ-treated SH-SY5Y cells by a mechanism associated with the Nrf2/HO-1 signaling pathway.


Asunto(s)
Antiinflamatorios/farmacología , Flavanonas/farmacología , Hemo-Oxigenasa 1/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Paraquat/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Hemo-Oxigenasa 1/metabolismo , Herbicidas/toxicidad , Humanos , Factor 2 Relacionado con NF-E2/metabolismo
4.
Biochimie ; 222: 37-44, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38360398

RESUMEN

AIMS: Acute kidney injury (AKI) is a public health problem and represents a risk factor for cardiovascular diseases (CVD) and vascular damage. This study aimed to investigate the impact of AKI on purinergic components in mice aorta. MAIN METHODS: The kidney ischemia was achieved by the occlusion of the left kidney pedicle for 60 min, followed by reperfusion for 8 (IR8) and 15 (IR15) days. Renal function was assessed through biochemical assays, while gene expression levels were evaluated by RT-qPCR. KEY FINDINGS: Analyses of renal parameters showed renal remodeling through mass loss in the left kidney and hypertrophy of the right kidney in the IR15 group. Furthermore, after 15 days, local inflammation was evidenced in the aorta. Moreover, the aorta purinergic components were significantly impacted by the renal ischemia and reperfusion model, with increases in gene expression of the pro-inflammatory purinoceptors P2Y1, P2Y2, P2Y6, and P2X4, potentially contributing to the vessel inflammation. The expression of NTPDase2 and ecto-5'-nucleotidase were also significantly increased in the aorta of the same group. In addition, both ATP and AMP hydrolysis were significantly increased in the aorta from IR15 animals, driving the entire purinergic cascade to the production of the anti-inflammatory adenosine. SIGNIFICANCE: In short, this is the first time that inflammation of the aorta due to AKI was shown to have an impact on purinergic signaling components, with emphasis on the adenosinergic pathway. This seems to be closely implicated in the establishment of vascular inflammation in this model of AKI and deserves to be further investigated.


Asunto(s)
Lesión Renal Aguda , Riñón , Daño por Reperfusión , Transducción de Señal , Animales , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Ratones , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Lesión Renal Aguda/etiología , Riñón/metabolismo , Riñón/irrigación sanguínea , Riñón/patología , Masculino , Aorta/metabolismo , Aorta/patología , 5'-Nucleotidasa/metabolismo , 5'-Nucleotidasa/genética , Ratones Endogámicos C57BL , Receptores Purinérgicos/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Receptores Purinérgicos P2Y2/genética
5.
J Inorg Biochem ; 255: 112524, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38507993

RESUMEN

Copper can be opportunely complexed to modulate oncogenic pathways, being a promising strategy for cancer treatment. Herein, three new copper(II) complexes containing long-chain aliphatic hydrazides and 1,10-phenanthroline (1,10-phen), namely, [Cu(octh)(1,10-phen)(H2O)](NO3)21, [Cu(dech)(1,10-phen)(H2O)](NO3)22 and [Cu(dodh)(1,10-phen)(H2O)](NO3)2.H2O 3 (where octh = octanoic hydrazide, dech = decanoic hydrazide, dodh = dodecanoic hydrazide) were successfully prepared and characterized by several physical-chemical methods. Furthermore, X-ray structural analysis of complex 2 indicated that the geometry around the copper(II) ion is distorted square-pyramidal, in which hydrazide and 1,10-phenanthroline act as bidentate ligands. A water molecule in the apical position completes the coordination sphere of the metal ion. All new copper(II) complexes were cytotoxic to breast cancer cell lines (MCF7, MDA-MB-453, MDA-MB-231, and MDA-MB-157) and selective when compared to the non tumor lineage MCF-10A. In particular, complex 2 showed half-maximal inhibitory concentration (IC50) values ranging between 2.7 and 13.4 µM in MDA-MB231 cells after 24 and 48 h of treatment, respectively. Furthermore, this complex proved to be more selective for tumor cell lines when compared to doxorubicin and docetaxel. Complex 2 inhibited the clonogenicity of MDA-MB231 cells, increasing adenosine diphosphate (ADP) hydrolysis and upregulating ecto-nucleoside triphosphate diphosphohydrolase 1 (ENTPD1) transcriptional levels. In this sense, we suggest that the inhibitory effect on cell proliferation may be related to the modulation of adenosine monophosphate (AMP) levels. Thus, a novel copper(II) complex with increased cytotoxic effects and selectivity against breast cancer cells was obtained, contributing to medicinal chemistry efforts toward the development of new chemotherapeutic agents.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Neoplasias de la Mama Triple Negativas , Humanos , Cobre/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Hidrazinas , Hidrólisis , Antineoplásicos/farmacología , Antineoplásicos/química , Fenantrolinas/farmacología , Fenantrolinas/química , Adenosina Difosfato , Cristalografía por Rayos X
6.
Front Physiol ; 13: 978378, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467706

RESUMEN

The vascular endothelium plays a pivotal role in the maintenance of vascular homeostasis, mediated by vasoactive molecules produced by endothelial cells. The balance between vasoconstrictor and vasodilator biomolecules is what guarantees this equilibrium. Therefore, an increase in the bioavailability of vasoconstrictors along with a reduction in vasodilators may indicate a condition known as endothelial dysfunction. Endothelial dysfunction is marked by an inflammatory process and reduced activity of vasoprotective enzymes, being characterized by some factors like the reduction of the bioavailability of nitric oxide (NO) and increase in the production of reactive oxygen species (ROS), pro-inflammatory and vasoconstrictor molecules. This condition is a predictive marker of several cardiovascular diseases (e.g., atherosclerosis, hypertension, and diabetes). Research is affected by the scarcity of suitable in vitro models that simulate endothelial dysfunction. The goal of this study was to induce an in vitro condition to mimic endothelial dysfunction by inhibiting NO synthesis in cells. Thymus-derived endothelial cells (tEnd.1) were treated with different concentrations of L-NAME (from 1 to 1,000 µM) for different times (12, 24, 48, 72, 96, and 120 h without and with retreatment every 24 h). Cell viability, nitrite concentration, p22phox, NOX2, NOX4, IL-6, and ACE genes expression and lipid peroxidation were evaluated. The results indicate that the treatment with 100 µM L-NAME for 72 h without retreatment reduced NO concentration and NOX4 gene expression while increasing ACE expression, thus mimicking reduced vascular protection and possibly increased vasoconstriction. On the other hand, treatment with 100 µM L-NAME for 96 h with retreatment reduced the concentration of NO and the expression of the p22phox gene while increasing the expression of the IL-6 and ACE genes, mimicking the increase in inflammation and vasoconstriction parameters. Based on these results, we thus propose that both 100 µM L-NAME for 72 h without retreatment and 100 µM L-NAME for 96 h with retreatment may be used as models for in vitro endothelial dysfunction according to the purpose of the study to be conducted.

7.
Neurotox Res ; 37(1): 100-110, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31494842

RESUMEN

The coffee diterpene kahweol (KW; C20H26O3) is a cytoprotective agent exhibiting potent antioxidant actions, as demonstrated in several experimental models. In spite of the efforts to elucidate exactly how KW promotes cytoprotection, it was not previously examined whether KW would be able to protect mitochondria of human cells undergoing redox stress. In the present work, we have treated the human neuroblastoma SH-SY5Y cell line with KW at 0.1-10 µM for 12 h prior to a challenge with methylglyoxal (MG), a reactive dicarbonyl that impairs mitochondrial function. We have found that KW at 10 µM suppressed the loss of mitochondrial membrane potential (MMP) and the bioenergetics decline (including decreased activity of the mitochondrial complexes I and V and reduced production of adenosine triphosphate, ATP) in the MG-treated SH-SY5Y cells. KW also prevented the MG-elicited generation of reactive oxygen and nitrogen species (ROS and RNS, respectively) in the SH-SY5Y cells. In this regard, KW exerted an antioxidant effect on the membranes of mitochondria obtained from the MG-treated cells. The mitochondria-related effects induced by KW were blocked by inhibition of the phosphoinositide 3-kinase (PI3K)/Akt or of the p38 mitogen-activated protein kinase (MAPK) signaling pathways. Moreover, silencing of the transcription factor nuclear factor E2-related factor 2 (Nrf2) suppressed the mitochondrial protection promoted by KW in the MG-challenged cells. Therefore, KW protected mitochondria by a mechanism associated with the PI3K/Akt and p38 MAPK/Nrf2 signaling pathways.


Asunto(s)
Citoprotección , Diterpenos/farmacología , Mitocondrias/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral , Diterpenos/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Complejo I de Transporte de Electrón/deficiencia , Humanos , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/fisiología , Enfermedades Mitocondriales/inducido químicamente , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Fármacos Neuroprotectores/farmacología , Piruvaldehído , Especies de Nitrógeno Reactivo/biosíntesis , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
8.
Platelets ; 20(2): 83-9, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19235049

RESUMEN

Platelets play a critical role in homeostasis and blood clotting at sites of vascular injury, and also in various ways in innate immunity and inflammation. Platelets are one of the first cells to accumulate at an injured site, and local release of their secretome at some point initiate an inflammatory cascade that attracts leukocytes, activates target cells, stimulates vessel growth and repair. The level of exogenous ATP in the body may be increased in various inflammatory and shock conditions, primarily as a consequence of nucleotide release from platelets, endothelium and blood vessel cells. An increase of ATP release has been described during inflammation and this compound presents proinflammatory properties. ADP is a nucleotide known to induce changes in platelets shape and aggregation, to promote the exposure of fibrinogen-binding sites and to inhibit the stimulation of adenylate cyclase. Adenosine, the final product of the nucleotide hydrolysis, is a vasodilator and an inhibitor of platelet aggregation. There is a group of ecto-enzymes responsible for extracellular nucleotide hydrolysis named ectonucleotidases, which includes the NTPDase (nucleoside triphosphate diphosphohydrolase) family, the NPP (nucleoside pyrophosphatase/phosphodiesterase) family and an ecto-5'-nucleotidase. Therefore, we have aimed to investigate the effect of lipopolysaccharide endotoxin from Escherichia coli on ectonucleotidases in platelets from adult rats in order to better understand the role of extracellular adenine nucleotides and nucleosides in the maintenance of blood homeostasis in inflammatory processes. LPS administered in vitro was not able to alter the ATP, ADP, AMP and rho-Nph-5'-TMP hydrolysis of platelets from untreated rats in all concentrations tested (25-100 microg/ml). There was a significant decrease in ATP, ADP, AMP and rho-Nph-5'-TMP hydrolysis in rat platelets after 48 hours of LPS exposure (2 mg/Kg, i.p.). ATP and ADP hydrolysis has been reduced about 28% whereas it has been observed a significant 30% and 26% decrease on AMP and rho-Nph-5'-TMP hydrolysis. Platelet aggregation and platelet number have shown a significant decrease in LPS-treated rats (40% and 55%, respectively) when compared to control group. These results suggest that changes observed in platelet count and, consequently, in nucleotidase activities from circulatory system could alter extracellular nucleotide and nucleoside levels, which might modulate the inflammatory process.


Asunto(s)
Plaquetas/metabolismo , Endotoxemia/metabolismo , Nucleótidos/metabolismo , 5'-Nucleotidasa/metabolismo , Animales , Hidrólisis , Lipopolisacáridos/metabolismo , Masculino , Ratas , Ratas Wistar
9.
J Mol Neurosci ; 69(1): 115-122, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31134531

RESUMEN

Redox impairment, inflammation, and increased rates of cell death are central players during neurodegeneration. In that context, activation of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) has been viewed as an interesting strategy in order to reduce the impact of redox dysfunction and neuroinflammation on cell fate. There is evidence indicating that the benefits caused by natural products in the brain may be due to the ability of these agents in upregulating Nrf2. Gastrodin (GAS) induces anti-oxidant, anti-inflammatory, and anti-apoptotic actions in brain cells. Nonetheless, the mechanisms underlying such effects are not clear yet. Therefore, we investigated here whether GAS would affect apoptosis and inflammation in the human neuroblastoma cell line (SH-SY5Y) exposed to hydrogen peroxide (H2O2). GAS at 1-25 µM was administrated to the cells during 30 min before a challenge with H2O2 at 300 µM for additional 24 h. GAS prevented the activation of the intrinsic apoptotic pathway by modulating the levels of Bcl-2 and Bax, causing a decrease in the release of cytochrome c to the cytosol. GAS also prevented the activation of the pro-apoptotic enzymes caspase-9 and caspase-3. Consequently, GAS abrogated poly (ADP-ribose) polymerase (PARP) cleavage and DNA fragmentation in the H2O2-treated SH-SY5Y cells. Moreover, GAS reduced the levels of interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) and the activity of nuclear factor-κB in H2O2-treated cells. Silencing of Nrf2 by small interfering RNA (siRNA) suppressed the GAS-induced cytoprotection. Thus, GAS elicited anti-apoptotic and anti-inflammatory effects by a mechanism involving Nrf2 in SH-SY5Y cells.


Asunto(s)
Apoptosis , Alcoholes Bencílicos/farmacología , Glucósidos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/farmacología , Línea Celular Tumoral , Fragmentación del ADN , Humanos , Peróxido de Hidrógeno/farmacología , Interleucina-1beta/metabolismo , FN-kappa B/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
10.
Toxicol In Vitro ; 61: 104601, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31306736

RESUMEN

The oxidative phosphorylation (OXPHOS) system located in the mitochondria is the main source of adenosine triphosphate (ATP) in mammals. The mitochondria are also the main site of reactive oxygen species (ROS) production in those cells. Disruption of the mitochondrial redox biology has been seen in the onset and progression of neurodegenerative diseases. In this regard, we have tested here whether kahweol (KW; C20H26O3), a diterpene present in coffee, would be able to promote mitochondrial protection in the human neuroblastoma SH-SY5Y cells exposed to hydrogen peroxide (H2O2). A pretreatment (for 12 h) with KW (at 10 µM) decreased the impact of H2O2 (at 300 µM) on the levels of oxidative stress markers in the mitochondrial membranes, as well as reduced the production of ROS by the organelles. KW pretreatment also suppressed the effects of H2O2 on the activity of components of the OXPHOS. The KW-induced mitochondria-related effects were blocked by inhibition of the phosphoinositide 3-kinase/Akt (PI3K/Akt) and p38 mitogen-activated protein kinase (MAPK) signaling pathways. Furthermore, silencing of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and inhibition of the heme oxygenase-1 (HO-1) enzyme abrogated the KW-induced protective effects on the mitochondria. Therefore, KW promoted mitochondrial protection by the PI3K/Akt and p38 MAPK/Nrf2/HO-1 axis in H2O2-challenged SH-SY5Y cells.


Asunto(s)
Diterpenos/farmacología , Peróxido de Hidrógeno/toxicidad , Mitocondrias/efectos de los fármacos , Neoplasias Encefálicas , Línea Celular Tumoral , Café , Hemo-Oxigenasa 1/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Neuroblastoma , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Neurotox Res ; 36(3): 491-502, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31359290

RESUMEN

Methylglyoxal (MG) is a dicarbonyl molecule exhibiting high reactivity and is a major responsible for glycation in human cells. Accumulation of MG is seen in certain diseases, including metabolic disturbances and neurodegeneration. Among other effects, MG promotes mitochondrial dysfunction, leading to bioenergetic decline and redox impairment in virtually any nucleated human cells. The detoxification of MG is dependent on the availability of reduced glutathione (GSH), a major antioxidant that is also utilized in phase II detoxification reactions. The synthesis of GSH is mainly controlled by the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). The activation of Nrf2 is stimulated by several reactive compounds, including natural molecules produced by plants. Tanshinone I (T-I) is obtained from Salvia miltiorrhiza Bunge and exerts potent cytoprotective actions in different cell types. Thus, we have investigated here whether and how T-I would be able to protect mitochondria of the human neuroblastoma SH-SY5Y cell line exposed to MG. The cells were pretreated with T-I at 2.5 µM for 2 h before the challenge with MG at 500 µM. T-I significantly attenuated the MG-induced loss of cell viability, bioenergetic decline, and redox impairment in SH-SY5Y cells. The inhibition of the GSH synthesis by buthionine sulfoximine (BSO) at 100 µM suppressed the mitochondrial protection promoted by T-I. The silencing of Nrf2 by small interfering RNA (siRNA) abrogated the synthesis of GSH and the mitochondrial protection stimulated by T-I in SH-SY5Y cells. Therefore, T-I induced mitochondrial protection by a mechanism involving the Nrf2/GSH axis in MG-challenged SH-SY5Y cells.


Asunto(s)
Abietanos/farmacología , Glutatión/metabolismo , Mitocondrias/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Neuroblastoma/metabolismo , Fármacos Neuroprotectores/farmacología , Piruvaldehído/farmacología , Línea Celular Tumoral , Humanos , Peróxido de Hidrógeno/metabolismo , Malondialdehído/metabolismo , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/metabolismo
12.
Mol Neurobiol ; 56(3): 2174-2184, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29998398

RESUMEN

Mitochondria are double-membrane organelles involved in the transduction of energy from different metabolic substrates into adenosine triphosphate (ATP) in mammalian cells. The oxidative phosphorylation system is comprised by the activity of the respiratory chain and the complex V (ATP synthase/ATPase). This system is dependent on oxygen gas (O2) in order to maintain a flux of electrons in the respiratory chain, since O2 is the final acceptor of these electrons. Electron leakage from this complex system leads to the continuous generation of reactive species in the cells. The mammalian cells exhibit certain mechanisms to attenuate the consequences originated from the constant exposure to these reactive species. In this context, the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and one of the enzymes whose expression is modulated by Nrf2, heme oxygenase-1 (HO-1), take a central role in inducing cytoprotection in humans. Mitochondrial abnormalities are observed during intoxication and in certain diseases, including neurodegeneration. Mitochondrial protection promoted by natural compounds has attracted the attention of researchers due to the promising effects these agents induce experimentally. In this regard, we examined here whether and how gastrodin (GAS), a phenolic glucoside, would prevent the paraquat (PQ)-induced mitochondrial impairment in the SH-SY5Y cells. The cells were exposed to GAS (25 µM) for 4 h prior to the challenge with PQ at 100 µM for additional 24 h. The silencing of Nrf2 by siRNA or the inhibition of HO-1 by ZnPP IX suppressed the GAS-elicited cytoprotection. Therefore, GAS promoted mitochondrial protection by an Nrf2/HO-1-dependent manner.


Asunto(s)
Alcoholes Bencílicos/farmacología , Glucósidos/farmacología , Hemo-Oxigenasa 1/metabolismo , Herbicidas/farmacología , Mitocondrias/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Paraquat/farmacología , Línea Celular Tumoral , Citoprotección/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Neuroblastoma/metabolismo , Especies Reactivas de Oxígeno/metabolismo
13.
Chem Biol Interact ; 310: 108728, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31254498

RESUMEN

Disruption of the mitochondrial function has been associated with redox impairment and triggering of cell death in nucleated human cells, as observed in several diseases. The administration of chemicals that would prevent mitochondrial dysfunction is an attractive strategy in cases of neurodegeneration, cardiovascular diseases, and metabolic disorders. Methylglyoxal (MG) is a dicarbonyl compound that exhibits an important role as a mitochondrial toxicant in neurodegenerative diseases (such as Alzheimer's disease and Parkinson's disease) and diabetes mellitus. On the other hand, naringenin (NGN; C15H12O5) is a natural antioxidant that also presents anti-inflammatory effects in mammalian cells. In this context, we have evaluated whether and how NGN would be able to prevent the mitochondria-related bioenergetics and redox dysfunctions induced by MG in the human neuroblastoma SH-SY5Y cells. The cells were pretreated (for 2 h) with NGN (at 10-80 µM) and then challenged with MG at 500 µM for 24 h. NGN significantly attenuated the effects of MG on the mitochondrial function and redox environment in this experimental model. Moreover, NGN prevented the MG-triggered mitochondria-related cell death in SH-SY5Y cells. Nonetheless, the inhibition of the synthesis of glutathione (GSH, a major non-enzymatic antioxidant) suppressed the promotion of mitochondrial protection by NGN in MG-treated cells. We also found that the synthesis of GSH was induced by NGN through a mechanism associated with the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Therefore, NGN caused mitochondrial protection by an Nrf2/GSH-dependent manner in SH-SY5Y cells exposed to MG.


Asunto(s)
Flavanonas/farmacología , Glutatión/metabolismo , Mitocondrias/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Neuroblastoma/patología , Fármacos Neuroprotectores/farmacología , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Flavanonas/uso terapéutico , Humanos , Oxidación-Reducción/efectos de los fármacos , Piruvaldehído/efectos adversos
14.
Blood Cells Mol Dis ; 41(2): 223-9, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18559295

RESUMEN

It is well known that hypertension is closely associated to the development of vascular diseases and that the inhibition of nitric oxide biosynthesis by administration of Nomega-Nitro-L-arginine methyl ester hydrochloride(L-NAME) leads to arterial hypertension. In the vascular system, extracellular purines mediate several effects;thus, ADP is the most important platelet agonist and recruiting ag ent, while adenosine, an end product of nucleotide metabolism, is a vasodilator and inhibitor of platelet activation and recruitment. Members of several families of enzymes, known as ectonucleotidases, including E-NTPDases (ecto-nucleoside triphosphate diphosphohydrolase), E-NPP (ecto-nucleotide pyrophosphatase/phosphodiesterase) and 5'-nucleotidase are able to hydrolyze extracellular nucleotides until their respective nucleosides. We investigated the ectonucleotidase activities of serum and platelets from rats made hypertensive by oral administration of L-NAME (30 mg/kg/day for 14 days or 30 mg/kg/day for 14 days plus 7 days of L-NAME washout, in the drinking water) in comparison to normotensive control rats. L-NAME promoted a significant rise in systolic blood pressure from 112 +/- 9.8 to 158 +/- 23 mmHg. The left ventricle weight index (LVWI) was increased in rats treated with L-NAME for 14 days when compared to control animals. In serum samples, ATP, ADP and AMP hydrolysis were reduced by about 27%, 36% and 27%, respectively. In platelets, the decrease in ATP, ADP and AMP hydrolysis was approximately 27%, 24% and 32%, respectively. All parameters recovered after 7 days of L-NAME washout. HPLC demonstrated a reduction in ADP, AMP and hypoxanthine levels by about 64%, 69% and 87%,respectively. In this study, we showed that ectonucleotidase activities are decreased in serum and platelets from L-NAME-treated rats, which should represent an additional risk for the development of hypertension. The modulation of ectonucleotidase activities may represent an approach to antihypertensive therapy via inhibition of spontaneous platelet activation and recruitment, as well as thrombus formation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Hipertensión/etiología , NG-Nitroarginina Metil Éster/farmacología , Nucleótidos de Adenina/análisis , Nucleótidos de Adenina/metabolismo , Adenosina Trifosfatasas/efectos de los fármacos , Animales , Plaquetas/enzimología , Hipertensión/inducido químicamente , Hipertrofia Ventricular Izquierda , NG-Nitroarginina Metil Éster/administración & dosificación , Ratas , Suero/enzimología
15.
Neurotox Res ; 34(2): 241-249, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29473125

RESUMEN

Sulforaphane (SFN), an isothiocyanate obtained from cruciferous vegetables, exerts antioxidant, antiapoptotic, and antitumor activities in different cell types. Moreover, SFN has been viewed as an anti-inflammatory agent. Nonetheless, the mechanism underlying the ability of SFN in modulating the immune response in mammalian cells is not completely understood yet. Therefore, we investigated here whether and how SFN would be effective in preventing inflammation induced by a pro-oxidant agent (hydrogen peroxide, H2O2) in the human neuroblastoma SH-SY5Y cells. The cells were treated with SFN at 5 µM for 30 min before a challenge with H2O2 for an additional 24 h. Pretreatment with SFN reduced the secretion of interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α), as well as decreased the levels of cyclooxygenase-2 (COX-2) in H2O2-treated cells. SFN also decreased the activity of the transcription factor nuclear factor-κB (NF-κB) and the immunocontent of the p65 NF-κB subunit in the cell nucleus. The inhibition of heme oxygenase-1 (HO-1) by ZnPP-IX at 10 µM or the silencing of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor by small interfering RNA targeting Nrf2 attenuated the anti-inflammatory and cytoprotective effects induced by SFN. Therefore, SFN exerted an anti-inflammatory effect in H2O2-challenged SH-SY5Y cells by a mechanism dependent on the Nrf2/HO-1 signaling pathway.


Asunto(s)
Anticarcinógenos/farmacología , Citocinas/metabolismo , Peróxido de Hidrógeno/farmacología , Isotiocianatos/farmacología , Oxidantes/farmacología , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Citocinas/genética , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Humanos , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Neuroblastoma/patología , Protoporfirinas/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Sulfóxidos
16.
J Mol Neurosci ; 64(2): 242-251, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29330687

RESUMEN

Mitochondrion is the main site of ATP production in animal cells and also orchestrates signaling pathways associated with cell survival and death. Mitochondrial dysfunction has been linked to bioenergetics and redox impairment in human diseases, such as neurodegeneration and cardiovascular disease. Protective agents able to attenuate mitochondrial impairment are of pharmacological interest. Gastrodin (GAS; 4-hydroxybenzyl alcohol 4-O-beta-D-glucoside) is a phenolic glucoside obtained from the Chinese herbal medicine Gastrodia elata Blume and exhibits antioxidant, anti-inflammatory, and antiapoptotic effects in several cell types. GAS is able to cross the blood-brain barrier, reducing the impact of different stressors on the cognition of experimental animals. In the present work, we investigated whether GAS would protect mitochondria of human SH-SY5Y neuroblastoma cells against an exposure to a pro-oxidant agent. The cells were treated with GAS at 25 µM for 30 min before the administration of hydrogen peroxide (H2O2) at 300 µM for an additional 3 or 24 h, depending on the assay. We evaluated both mitochondrial redox state and function parameters and analyzed the mechanism by which GAS protected mitochondria in this experimental model. Silencing of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor suppressed the GAS-induced mitochondrial protection seen here. Moreover, Nrf2 knockdown abrogated the effects of GAS on cell viability, indicating a potential role for Nrf2 in both mitochondrial and cellular protection promoted by GAS. Further research would be necessary to investigate whether GAS would be able to induce similar effects in in vivo experimental models.


Asunto(s)
Antioxidantes/farmacología , Alcoholes Bencílicos/farmacología , Glucósidos/farmacología , Mitocondrias/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral , Humanos , Peróxido de Hidrógeno/toxicidad , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción
17.
Mol Neurobiol ; 55(6): 4777-4787, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28730528

RESUMEN

Sulforaphane (SFN; C6H11NOS2) is an isothiocyanate found in cruciferous vegetables, such as broccoli, kale, and radish. SFN exhibits antioxidant, anti-apoptotic, anti-tumor, and anti-inflammatory activities in different cell types. However, it was not previously demonstrated whether and how this natural compound would exert mitochondrial protection experimentally. Therefore, we investigated here the effects of a pretreatment (for 30 min) with SFN at 5 µM on mitochondria obtained from human neuroblastoma SH-SY5Y cells exposed to hydrogen peroxide (H2O2) at 300 µM for 24 h. We found that SFN prevented loss of viability in H2O2-treated SH-SY5Y cells. Furthermore, SFN decreased lipid peroxidation, protein carbonylation, and protein nitration in mitochondrial membranes of H2O2-exposed cells. Importantly, SFN enhanced the levels of both cellular and mitochondrial glutathione (GSH). SFN also suppressed the H2O2-mediated inhibition of mitochondrial components involved in the maintenance of the bioenergetics state, such as aconitase, α-ketoglutarate dehydrogenase, and succinate dehydrogenase, as well as complexes I and V. Consequently, SFN prevented the decline induced by H2O2 on the levels of ATP in SH-SY5Y cells. Silencing of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor by using small interfering RNA (siRNA) abolished the mitochondrial and cellular protection elicited by SFN. Therefore, SFN abrogated the H2O2-induced mitochondrial impairment by an Nrf2-dependent manner.


Asunto(s)
Peróxido de Hidrógeno/toxicidad , Isotiocianatos/farmacología , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Glutatión/metabolismo , Humanos , Peroxidación de Lípido/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , ARN Interferente Pequeño/metabolismo , Sulfóxidos , Superóxidos/metabolismo
18.
Mol Neurobiol ; 55(1): 890-897, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28083817

RESUMEN

Carnosic acid (CA) is a phenolic diterpene obtained from Rosmarinus officinalis L. and has demonstrated cytoprotective properties in several experimental models. CA exerts antioxidant effects by upregulating the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which controls the expression of antioxidant and phase II detoxification enzymes. Heme oxygenase-1 (HO-1) expression is modulated by Nrf2 and has been demonstrated as part of the mechanism underlying the CA-induced cytoprotection. Nonetheless, it remains to be studied whether and how HO-1 would mediate CA-elicited anti-inflammatory effects. Therefore, we have investigated here whether and how CA would prevent paraquat (PQ)-induced inflammation-related alterations in human neuroblastoma SH-SY5Y cells. SH-SY5Y cells were pretreated for 12 h with CA at 1 µM before exposure to PQ for further 24 h. CA suppressed the PQ-induced alterations on the levels of interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2) through a mechanism involving the activation of the Nrf2/HO-1 axis. Furthermore, we observed a crosstalk between the Nrf2/HO-1 signaling pathway and the activation of the nuclear factor-κB (NF-κB) transcription factor, since administration of ZnPP IX (specific inhibitor of HO-1) or Nrf2 knockdown using small interfering RNA (siRNA) abolished the anti-inflammatory effects induced by CA. Moreover, administration of SN50 (specific inhibitor of NF-κB) inhibited the PQ-induced inflammation-related effects in SH-SY5Y cells. Therefore, CA exerted anti-inflammatory effects in SH-SY5Y cells through an Nrf2/HO-1 axis-dependent manner associated with downregulation of NF-κB.


Asunto(s)
Abietanos/farmacología , Antiinflamatorios/farmacología , Hemo-Oxigenasa 1/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Paraquat/toxicidad , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Óxido Nítrico/metabolismo
19.
Eur J Pharmacol ; 560(2-3): 212-5, 2007 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-17292883

RESUMEN

The effect of methylprednisolone on the hydrolysis of adenine nucleotides by rat blood serum enzymes was studied. Adult male Wistar rats were submitted to three different treatments with synthetic steroid methylprednisolone: one dose of 50 mg/kg, i.p. (acute); or oral doses of 6 mg/kg dissolved in drinking water for 15 (sub-chronic) or 30 (chronic) days. Decreased ADP hydrolysis was observed after acute and sub-chronic treatments. Furthermore, ATP, ADP and AMP hydrolysis decreased after chronic treatment. These alterations may constitute one of the mechanisms that mediate the development of some of the side effects associated with corticosteroid use.


Asunto(s)
Nucleótidos de Adenina/sangre , Metilprednisolona/farmacología , Envejecimiento/metabolismo , Animales , Hidrólisis , Masculino , Ratas , Ratas Wistar
20.
Arch Oral Biol ; 52(10): 916-23, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17499574

RESUMEN

The participation of ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP) activity in the nucleotide hydrolysis by salivary gland cells of rats was evaluated using p-nitrophenyl 5'-thymidine monophosphate (p-Nph-5'-TMP) as a substrate for this enzyme. We investigated the biochemical characteristics of this ectoenzyme in cells cultured from submandibular salivary glands of rats. Primary cell cultures demonstrated ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP) activities, which could be observed by extracellular hydrolysis of p-Nph-5'-TMP and other biochemical characteristics such as dependence of metal ions, dependence of pH alkaline and inactivation by a metal ion chelator. The Km value for the hydrolysis of p-Nph-5'-TMP was 280.7+/-34.2 microM (mean+/-S.D., n=4) and Vmax was 721.31+/-225nmol p-nitrophenol/min/mg (mean+/-S.D., n=4). We suggest that E-NPP is co-localized with an ecto-ATP diphosphohydrolase/ecto-NTPDase and an ecto-5'-nucleotidase, since these enzymes probably act under different conditions. It may be postulated that the physiological role for these ecto-enzymes is to terminate the action of the co-transmitter ATP, generating adenosine.


Asunto(s)
Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Nucleótidos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/metabolismo , Glándula Submandibular/enzimología , Adenosina Difosfato/química , Adenosina Trifosfato/química , Análisis de Varianza , Animales , Células Cultivadas , Activación Enzimática , Hidrólisis , Nucleótidos/química , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/farmacocinética , Pirofosfatasas/química , Pirofosfatasas/farmacocinética , Ratas , Glándula Submandibular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA