Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Chemistry ; 29(41): e202300899, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37156722

RESUMEN

The supramolecular recognition of anions is increasingly harnessed to achieve the self-assembly of supramolecular architectures, ranging from cages and polymers to (pseudo)rotaxanes. The cyanostar (CS) macrocycle has previously been shown to form 2 : 1 complexes with organophosphate anions that can be turned into [3]rotaxanes by stoppering. Here we achieved steric control over the assembly of pseudorotaxanes comprising the cyanostar macrocycle and a thread that is based, for the first time, on organo-pyrophosphonates. Subtle differences in steric bulk on the threads allowed formation of either [3]pseudorotaxanes or [2]pseudorotaxanes. We demonstrate that the threading kinetics are governed by the steric demand of the organo-pyrophosphonates and in one case, slows down to the timescale of minutes. Calculations show that the dianions are sterically offset inside the macrocycles. Our findings broaden the scope of cyanostar-anion assemblies and may have relevance for the design of molecular machines whose directionality is a result of relatively slow slipping.

2.
J Org Chem ; 86(6): 4532-4546, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33636075

RESUMEN

The recognition of substituted phosphates underpins many processes including DNA binding, enantioselective catalysis, and recently template-directed rotaxane synthesis. Beyond ATP and a few commercial substrates, however, little is known about how substituents effect organophosphate recognition. Here, we examined alcohol substituents and their impact on recognition by cyanostar macrocycles. The organophosphates were disubstituted by alcohols of various chain lengths, dipropanol, dihexanol, and didecanol phosphate, each accessed using modular solid-phases syntheses. Based on the known size-selective binding of phosphates by π-stacked dimers of cyanostars, threaded [3]pseudorotaxanes were anticipated. While seen with butyl substituents, pseudorotaxane formation was disrupted by competitive OH···O- hydrogen bonding between both terminal hydroxyls and the anionic phosphate unit. Crystallography also showed formation of a backfolded propanol conformation resulting in an 8-membered ring and a perched cyanostar assembly. Motivated by established entropic penalties accompanying ring formation, we reinstated [3]pseudorotaxanes by extending the size of the substituent to hexanol and decanol. Chain entropy overcomes the enthalpically favored OH···O- contacts to favor random-coil conformations required for seamless, high-fidelity threading of dihexanol and didecanol phosphates inside cyanostars. These studies highlight how chain length and functional groups on phosphate's substituents can be powerful design tools to regulate binding and control assembly formation during phosphate recognition.


Asunto(s)
Rotaxanos , Entropía , Enlace de Hidrógeno , Conformación Molecular , Fosfatos
3.
J Am Chem Soc ; 141(44): 17588-17600, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31503483

RESUMEN

Anfinsen's dogma that sequence dictates structure is fundamental to understanding the activity and assembly of proteins. This idea has been applied to all manner of oligomers but not to the behavior of cyclic oligomers, aka macrocycles. We do this here by providing the first proofs that sequence controls the hierarchical assembly of nonbiological macrocycles, in this case, at graphite surfaces. To design macrocycles with one (AAA), two (AAB), or three (ABC) different carbazole units, we needed to subvert the synthetic preferences for one-pot macrocyclizations. We developed a new stepwise synthesis with sequence-defined targets made in 11, 17, and 22 steps with 25, 10, and 5% yields, respectively. The linear build up of primary sequence (1°) also enabled a thermal Huisgen cycloaddition to proceed regioselectively for the first time using geometric control. The resulting macrocycles are planar (2° structure) and form H-bonded dimers (3°) at surfaces. Primary sequences encoded into the suite of tricarb macrocycles were shown by scanning-tunneling microscopy (STM) to impact the next levels of supramolecular ordering (4°) and 2D crystalline polymorphs (5°) at solution-graphite interfaces. STM imaging of an AAB macrocycle revealed the formation of a new gap phase that was inaccessible using only C3-symmetric macrocycles. STM imaging of two additional sequence-controlled macrocycles (AAD, ABE) allowed us to identify the factors driving the formation of this new polymorph. This demonstration of how sequence controls the hierarchical patterning of macrocycles raises the importance of stepwise syntheses relative to one-pot macrocyclizations to offer new approaches for greater understanding and control of hierarchical assembly.

4.
Chemistry ; 24(39): 9841-9852, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29665108

RESUMEN

Hierarchical assembly provides a route to complex architectures when using building blocks with strong and structurally well-defined recognition elements. These rules are traditionally expressed using cationic templates with reliable metal-ligand bonding but use of anions is rare on account of weak anion-host contacts. We investigate an approach that relies on host-host interactions to fortify assemblies formed between bisulfate anion dimers, [HSO4⋅⋅⋅HSO4]2- , and shape-persistent macrocycles called tricarbazole triazolophanes. These macrocycles have significant self-association. In chloroform, they form high fidelity, triple-decker stacks with bisulfate dimers. The strength of host-host interactions allows for preferential formation of the 3:2 tricarb:bisulfate architecture over an ion-paired architecture seen with analogous macrocycles with much weaker self-association. Solvent was expected and found to tune host-host contacts enabling formation of a 2:2 complex and solvent-driven switching between triple- and double-stacked structures. Crystallography of the 2:2:2 complex supports the idea that significant host-host interactions with tricarb arises from dipole-stabilized π-stacking. Computational studies were also conducted further highlighting the importance of host-host interactions in stacked complexes of tricarb. These findings unambiguously verify the importance of host-host interactions in the assembly and stability of discrete, responsive anion-templated architectures.

5.
Chem Sci ; 14(10): 2585-2595, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36908961

RESUMEN

Subcomponent self-assembly relies on cation coordination whereas the roles of anions often only emerge during the assembly process. When sites for anions are instead pre-programmed, they have the potential to be used as orthogonal elements to build up structure in a predictable and modular way. We explore this idea by combining cation (M+) and anion (X-) binding sites together and show the orthogonal and modular build up of structure in a multi-ion assembly. Cation binding is based on a ligand (L) made by subcomponent metal-imine chemistry (M+ = Cu+, Au+) while the site for anion binding (X- = BF4 -, ClO4 -) derives from the inner cavity of cyanostar (CS) macrocycles. The two sites are connected by imine condensation between a pyridyl-aldehyde and an aniline-modified cyanostar. The target assembly [LM-CS-X-CS-ML],+ generates two terminal metal complexation sites (LM and ML) with one central anion-bridging site (X) defined by cyanostar dimerization. We showcase modular assembly by isolating intermediates when the primary structure-directing ions are paired with weakly coordinating counter ions. Cation-directed (Cu+) or anion-bridged (BF4 -) intermediates can be isolated along either cation-anion or anion-cation pathways. Different products can also be prepared in a modular way using Au+ and ClO4 -. This is also the first use of gold(i) in subcomponent self-assembly. Pre-programmed cation and anion binding sites combine with judicious selection of spectator ions to provide modular noncovalent syntheses of multi-component architectures.

6.
Front Chem ; 10: 856173, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464214

RESUMEN

Rotaxanes are an emerging class of molecules composed of two building blocks: macrocycles and threads. Rotaxanes, and their pseudorotaxane and polyrotaxane relatives, serve as prototypes for molecular-level switches and machines and as components in materials like elastic polymers and 3D printing inks. The rigidity and flexibility of these molecules is a characteristic feature of their design. However, the mechanical properties of the assembled rotaxane and its components are rarely examined directly, and the translation of these properties from molecules to bulk materials is understudied. In this Review, we consider the mechanical properties of rotaxanes by making use of concepts borrowed from physical organic chemistry. Rigid molecules have fewer accessible conformations with higher energy barriers while flexible molecules have more accessible conformations and lower energy barriers. The macrocycles and threads become rigidified when threaded together as rotaxanes in which the formation of intermolecular interactions and increased steric contacts collectively reduce the conformational space and raise barriers. Conversely, rotational and translational isomerism in rotaxanes adds novel modes of flexibility. We find that rigidification in rotaxanes is almost universal, but novel degrees of flexibility can be introduced. Both have roles to play in the function of rotaxanes.

7.
Front Chem ; 10: 953052, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35991611

RESUMEN

[This corrects the article DOI: 10.3389/fchem.2022.856173.].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA