Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Microb Pathog ; 174: 105922, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36462579

RESUMEN

The infection of Cryptosporidium in pigs causes digestive system ailments, diarrhea and weight loss serving as an economic burden, especially in newborn animals. The bacterial fermentation products of short-chain fatty acids have important roles in immune function, microbiota regulation, osmotic balance and metabolism. However, till now little knowledge is available about the effect of Cryptosporidium infection on microbiota and SCFAs in plateau pigs. Hence, we performed this study to explore the response of microbiota and SCFAs in the natural infection of Cryptosporidium in Tibetan pigs. Cryptosporidium positive (infected, G) and negative samples (healthy, J) in our previous study were used for high throughputsequencing and Gas Chromatography-Mass Spectrometer analysis. Over 81 000 and 74 000 filtered sequences were detected in healthy and infected Tibetan pigs, respectively. Lower sample richness and evenness were observed in Cryptosporidium infection, as alpha diversity analysis found that chao1 (p < 0.05), faith_pd (p < 0.05), and observed_features in group G were significantly lower than pigs in group J. A total of 4 and 27 significant different phyla and genera were found between group G and J. The changed genera were Psychrobacter, Desemzia, Succiniclasticum, Treponema, Campylobacter, Atopobium, Olsenella, Pediococcus, Peptococcus, Sharpea, Desulfovibrio, Acinetobacter, Rhodococcus, Anaerostipes, Turicibacter, Lactobacillus, RFN20, Phascolarctobacterium, Roseburia, Megasphaera, Streptococcus, Blautia, Lachnospira, rc4_4, Gemmiger, Dorea, Oribacterium and Prevotella, which affected the microbiota functions with 360 abundance changed enzymes, and pathways in L1, L2 and L3 levels of KEGG. The concentration of acetic acid (p < 0.01), butyric acid (p < 0.05) and caproic acid (p < 0.01) were lower in group G. In conclusion, the present study herein uncovered that the host responses to Cryptosporidium infection in Tibetan pigs with 27 of significantly changed genera decreased SCFAs in pigs, which may provide insights in further developing novel therapy against this protozoan.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Microbioma Gastrointestinal , Animales , Porcinos , Tibet , Disbiosis/veterinaria , Ácido Butírico
2.
Microb Pathog ; 180: 106159, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37201636

RESUMEN

Gastrointestinal (GI) disease is a common digestive tract disease effects health of millions of human globally each year, thus the role of intestinal microflora had been emphasized. Seaweed polysaccharides featured a wide range of pharmacological activities, such as antioxidant activity and pharmacological action, but whether they can alleviate the dysbiosis of gut microbial ecology caused by lipopolysaccharide (LPS) exposure has not been well conducted. In this study, we investigated the effects of different concentration of seaweed polysaccharides on LPS-induced intestinal disorder by using hematoxylin and eosin (H&E) staining and 16S rRNA high-throughput sequencing. Histopathological results indicated that the intestinal structure in the LPS-induced group was damaged. Furthermore, LPS exposure not only reduced the intestinal microbial diversity in mice but also induced considerable transformation in its composition, along with significant increase in pathogenic bacteria (Helicobacter, Citrobacter and Mucispirillum) and decrease in beneficial bacteria (Firmicutes, Lactobacillus, Akkermansia and Parabacteroides). Nonetheless, seaweed polysaccharides administration could recover the gut microbial dysbiosis and the loss of gut microbial diversity induced by LPS exposure. In summary, seaweed polysaccharides were effective against LPS-induced intestinal damage in mice via the modulation of intestinal microecology.


Asunto(s)
Lipopolisacáridos , Algas Marinas , Ratones , Humanos , Animales , Lipopolisacáridos/farmacología , Disbiosis/inducido químicamente , Disbiosis/tratamiento farmacológico , ARN Ribosómico 16S/genética , Polisacáridos/farmacología , Bacterias , Verduras
3.
Ecotoxicol Environ Saf ; 237: 113532, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35472558

RESUMEN

Industrial production, ore smelting and sewage disposal plant can discharge large amounts of heavy metals every year, which may contaminate soil, water and air, posing a great threat to ecological environment and animal production. Hexavalent chromium [Cr (VI)], a recognized metallic contaminant, has been shown to impair kidney, liver and gastrointestinal tract of many species, but little is known about the gut microbial characteristics of chickens exposed to Cr (VI). Herein, this study characterized the gut microbial alternations of chickens exposed to Cr (VI). Results indicated that the gut microbial alpha-diversity in chickens exposed to Cr (VI) decreased significantly, accompanied by a distinct shifts in taxonomic composition. Microbial taxonomic analysis demonstrated that the preponderant phyla (Firmicutes, Bacteroidetes, Proteobacteria and Epsilonbacteraeota) were the same in both groups, but different in types and relative abundances of dominant genera. Moreover, some bacterial taxa including 2 phyla and 47 genera significantly decreased, whereas 3 phyla and 17 genera significantly increased during Cr (VI) exposure. Among decreased taxa, 9 genera (Coprobacter, Ruminococcus_1, Faecalicoccus, Eubacterium_nodatum_group, Parasutterella, Slackia, Barnesiella, Family_XIII_UCG-001 and Collinsella) even cannot be detected. In conclusion, this study revealed that Cr (VI) exposure dramatically decrased the gut microbial diversity and altered microbial composition of chickens. Additionally, this study also provided a theoretical basis for relieving Cr (VI) poisoning from the perspective of gut microbiota.


Asunto(s)
Pollos , Microbioma Gastrointestinal , Animales , Bacteroidetes , Cromo/toxicidad , Firmicutes , Homeostasis
4.
Ecotoxicol Environ Saf ; 228: 112981, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34781124

RESUMEN

Thiram causes tibial dyschondroplasia in broilers, leading to a significant economic loss in the poultry industry. Our study explored the effects of taurine in thiram induced tibial dyschondroplasia (TD) through in vivo and in vitro approches. In in vivo study, thiram resulted in lameness disorder, low production parameters ALP, ACP, and a high level of NOS. While, the taurine exhibited promising effect by reducing lameness, increasing ALP, ACP levels, and significantly lowering NOS level with the restoration of the growth plate. In in vitro study, thiram caused distortion and disintegration of chondrocytes. The CCK-8 technique revealed the lower cell activity in TD as compared with the treatment group. Even, the treatment and taurine groups had higher cell activity than control group. Also, the chondrocyte morphology progressively reverted to normal after taurine treatment. It might effectively decreased the symptoms of TD in broilers and their production performance. Further research found that the taurine effectively improved chondrocytes' cell viability and recovered lameness disorder by regulation of HIF-1α, VEGFA, and Wnt/ß-catenin signaling pathways. In summary, these results indicate that taurine has a protective effect on thiram-induced broilers and it can enhance the growth activity by directly affecting the development of chondrocytes and blood vessels.

5.
Microb Pathog ; 149: 104537, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32980474

RESUMEN

Staphylococcus aureus is emerging as complicated pathogen because of its wide-ranging origin, multiple variants, and compromised antibiotic susceptibilities. Current study was planned to find lineage of hospital acquired methicillin resistant Staphylococcus aureus (HA-MRSA), and its comparative phenotypic clinico-epidemiology with vancomycin resistant S. aureus (VRSA). A total of (n = 200) samples were aseptically collected from wound, nose, and cerebrospinal fluid of patients from metropolitan and rural background hospitals along with on spot filling in of questionnaire. Phylogenetic analysis of HA-MRSA was identified by targeting mecA gene in S. aureus. At optimal tree branch length of 1.91 and evolutionary distance 0.1, high level sequence similarity (97%-99%) was observed with different strains of S. aureus isolated from both human and animal. Non-descriptive statistics at 5% probability found 61% S. aureus, while 43.44% of them were HA-MRSA, 92.62% VRSA, and 42.62% were both MRSA and VRSA. Among assumed risk factors, use of antibiotics, venous catheterization, chronic disease, pre-hospital visits, and ICU admitted patients showed significant association (p<0.05) with pathogen. HA-MRSA was 37.50%, 80%, and 37.50% sensitive to chloramphenicol, gentamicin, and oxacillin, respectively. While <50% of VRSA were sensitive against oxacillin, enoxacin, and chloramphenicol. A significant difference (p<0.05) of percentage responses of MRSA and VRSA at resistant, intermediate, and sensitive cadre against all antibiotics except chloramphenicol was obvious in this study. The Current study concluded higher prevalence of MRSA & VRSA, significant association of risk factors, limiting antibiotic susceptibility profile, and genetic transfer at animal-human interface which suggests further studies cum preventive strategies to be planned.


Asunto(s)
Infección Hospitalaria , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infección Hospitalaria/tratamiento farmacológico , Hospitales , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Filogenia , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/epidemiología , Staphylococcus aureus/genética , Vancomicina/farmacología , Staphylococcus aureus Resistente a Vancomicina
6.
Ecotoxicol Environ Saf ; 206: 111194, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32866894

RESUMEN

Tibial Dyschondroplasia (TD) is a prevailing skeletal disorder that mainly affects rapidly growing avian species. It results in reduced bone strength, lameness and an increase risk of fragility fractures. Total flavonoids of Rhizoma drynariae (TFRD) have been used as an effective treatment of different bone diseases in humans. The current in vitro study was conducted to explore the therapeutic effect of TFRD on thiram-induced cytotoxicity in avian growth plate cells via bone morphogenetic protein-2/runt related transcription factor-2 (BMP-2/Runx2) and Indian hedgehog/Parathyroid hormone-related peptide (IHH/PTHrP) expressions. Chondrocytes were isolated, cultured and refined from chicken's tibial growth plates in a special medium. Then chondrocytes were treated with sublethal thiram having less concentration (2.5 µg/mL) to induce cytotoxicity of chondrocyte, and then treated with providential doses (100 µg/mL) of TFRD. Thiram caused distorted morphology of chondrocytes, nuclei appeared disintegration or lysed along with decreased expressions of BMP-2/Runx2 and IHH/PTHrP. TFRD administration not only enhanced the viability of chondrocytes by itself, but also well restored the damage caused by thiram on growth plate chondrocytes by significantly up-regulating the expressions of BMP-2/Runx2 and IHH/PTHrP. Therefore, this study provides a novel insight into the further treatment of TD and other skeletal ailments and lays the foundation for prevention and treatment.


Asunto(s)
Proteína Morfogenética Ósea 2/genética , Condrocitos/efectos de los fármacos , Flavonoides/farmacología , Expresión Génica/efectos de los fármacos , Polypodiaceae/química , Tiram/toxicidad , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Pollos , Condrocitos/metabolismo , Condrocitos/patología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Flavonoides/aislamiento & purificación , Placa de Crecimiento/citología , Placa de Crecimiento/efectos de los fármacos , Proteínas Hedgehog/genética , Proteína Relacionada con la Hormona Paratiroidea/genética , Cultivo Primario de Células , Rizoma , Regulación hacia Arriba
7.
Front Cell Infect Microbiol ; 12: 1054205, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699727

RESUMEN

Terminalia bellirica (Gaertn.) Roxb. (TB) is a traditional herbal combination used in Chinese medicine for the treatment of a broad range of diseases. In this study, thirty KM mice were randomly divided into control (N), infection group (NS), and the TB protection group (HS). Based on its digestive feature, intestinal physical barrier, immunological barrier and gut microbiota effects in vivo on challenged with S.typhimurium mice were investigated after oral administration of 600 mg/kg b.wt of TB for 13 days. The results show that the extract could improve the level of serum immunoglobulins (IgA and IgG), decrease the intestinal cytokine secretion to relieve intestinal cytokine storm, reinforce the intestinal biochemical barrier function by elevating the sIgA expression, and strengthen the intestinal physical barrier function. Simultaneously, based on the V3-V4 region of the 16S rRNA analyzed, the results of the taxonomic structure of the intestinal microbiota demonstrated that the TB prevention effect transformed the key phylotypes of the gut microbiota in S. Typhimurium-challenged mice and promoted the multiplication of beneficial bacteria. Furthermore, the abundance of Firmicutes and Deferribacteres increased, while that of Bacteroidetes and Actinobacteria decreased. At the genus level, the abundance of Ruminococcus and Oscillospira was substantially enhanced, while the other dominant genera showed no significant change between the vehicle control groups and the TB prevention groups. In summary, these results provide evidence that the administration of TB extract can prevent S. Typhimurium infection by alleviating the intestinal physical and immunological barriers and normalizing the gut microbiota, highlighting a promising application in clinical treatment. Thus, our results provide new insights into the biological functions of TB for the preventive effect of intestinal inflammation.


Asunto(s)
Salmonella typhimurium , Terminalia , Animales , Ratones , Bacterias/genética , Intestinos , Extractos Vegetales/farmacología , Extractos Vegetales/química , ARN Ribosómico 16S , Salmonella typhimurium/genética , Terminalia/química , Terminalia/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-36536234

RESUMEN

The Tibetan livestock sector is now ailing from many infectious ailments brought on by harmful microorganisms. Therefore, this research aimed to assess the probiotic potential and safety of Bacillus amyloliquefaciens isolated from yaks in the Tibet area to provide upper-edge strain resources for probiotics development. The four strains isolated from the intestine of yaks had been identified as Bacillus amyloliquefaciens after the 16S rRNA sequence. The ethanol, bile salt, and acid tolerance revealed that the isolates had significant tolerance levels. The antibiotics susceptibility assay showed that the strains were sensitive to commonly used antibiotics, while the antibacterial assay prevented the isolates from outperforming five harmful bacteria in terms of antibacterial potency. Moreover, it was evident that strain BA5 had the strongest activity to scavenge hydroxyl radical and reduce power. According to the animal experiment, no apparent pathological change was observed in intestinal tissue sections. Furthermore, the strain had a positive effect on promoting the development of jejunal villi referred to its safety. Therefore, more research is required into the bacteriostatic and antioxidant capabilities of isolates in animal production.

9.
Phytomedicine ; 95: 153865, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34856474

RESUMEN

BACKGROUND: Tibial dyschondroplasia (TD) is a common disease characterized by proliferation and the deterioration of growth plate's chondrocytes due to widespread utilization of thiram in the agriculture and industrial sector. PURPOSE: In recent years, Nod-like receptor pyrin domain 3 (NLRP3) inflammasome has become a dilemma in the occurrence of many diseases. According to many research investigations, NLRP3 inflammasome has been linked to various diseases caused by pesticides and environmental toxins. Its involvement in such conditions opens up new treatment approaches. However, the role of the NLRP3 inflammasome in the development of TD is not fully understood under the impact of chlorogenic acid (CGA). METHODS: Chondrocytes were cultured with our previously developed methodology from growth plates. After morphological and molecular identification, chondrocytes were split into different groups to investigate the efficacy of chlorogenic acid. Cell apoptosis was determined through flow cytometry and Tunnel assay. Furthermore, RT-qPCR, immunofluorescence, and western blotting techniques were used to check marker genes and proteins expression. RESULTS: In thiram-induced TD, Bax/Bak activation persuade a parallel pathway, mediated by the NLRP3 base inflammasome. It is worth mentioning that the apoptotic executioners (caspase-3 and caspase-7) act upstream for inflammasome. Furthermore, chondrocytes' ability to undergo mitochondrial apoptosis was governed by anti-apoptotic members, e.g., Bcl-2 and Bcl-xl. Equilibrium of these anti-apoptotic proteins ensured appropriate regulation of apoptosis during the development and survival of chondrocytes. CONCLUSION: Chondrocytes have ability to undergo Bax/Bak-mediated apoptosis and generate pro-inflammatory signals, e.g., NLRP3 in thiram-induced TD. So, the Nod-like receptor pyrin domain 3 is the potential target to eliminate TD at all stages of pathology, while drugs, e.g., CGA, can significantly improve chondrocytes' survival by targeting these pro-inflammatory signals.


Asunto(s)
Ácido Clorogénico/farmacología , Condrocitos/efectos de los fármacos , Inflamasomas , Tiram , Animales , Pollos , Proteína con Dominio Pirina 3 de la Familia NLR , Dominio Pirina , Proteína Destructora del Antagonista Homólogo bcl-2 , Proteína X Asociada a bcl-2
10.
Front Microbiol ; 12: 649207, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484132

RESUMEN

Yaks (Bos grunniens) live primarily in high-altitude hypoxic conditions and have a unique intestinal micro-ecosystem, remarkable adaptability, and strong climatic resistance. Accumulating evidence revealed the importance of probiotics in host metabolism, gut microbiota, growth performance, and health. The goal of this study was to screen out probiotics with excellent probiotic potential for clinical application. In this study, four strains of Bacillus, i.e., Bacillus proteolyticus (named Z1 and Z2), Bacillus amyloliquefaciens (named J), and Bacillus subtilis (named K), were isolated and identified. Afterward, their probiotic potential was evaluated. Antioxidant activity tests revealed that Z1 had the highest DPPH and hydroxyl radical scavenging activity, whereas Z2 had higher reducing power and inhibited lipid peroxidation. Additionally, the antibacterial testing revealed that all strains were antagonistic to three indicator pathogens, Escherichia coli C83902, Staphylococcus aureus BNCC186335, and Salmonella enteritidis NTNC13349. These isolates also had a higher hydrophobicity, autoaggregation, and acid and bile tolerance, all of which helped to survive and keep dangerous bacteria out of the host intestine. Importantly, all strains could be considered safe in terms of antibiotic susceptibility and lack of hemolysis. In conclusion, this is the first study to show that B. proteolyticus and B. amyloliquefaciens isolated from yaks have probiotic potential, providing a better foundation for future clinical use.

11.
Front Microbiol ; 12: 712092, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34475863

RESUMEN

Gut microbiota has been demonstrated to be associated with multiple gastrointestinal diseases, but information regarding the gut microbial alternations in diarrheic giraffe remains scarce. Here, 16S rDNA and ITS gene amplicon sequencing were conducted to investigate the gut microbial composition and variability in diarrheic giraffes. Results demonstrated that Firmicutes and Proteobacteria were the most dominant phyla in the gut bacterial community, whereas Ascomycota and Basidiomycota were observed to be predominant in the gut fungal community regardless of health status. However, the species and relative abundance of preponderant bacterial and fungal genera in healthy and diarrheic giraffes were different. In contrast to the relatively stabilized gut fungal community, gut bacterial community displayed a significant decrease in the alpha diversity, accompanied by distinct changes in taxonomic compositions. Bacterial taxonomic analysis revealed that the relative abundances of eight phyla and 12 genera obviously increased, whereas the relative abundances of two phyla and eight genera dramatically decreased during diarrhea. Moreover, the relative richness of five fungal genera significantly increased, whereas the relative richness of seven fungal genera significantly declined in diarrheic giraffes. Taken together, this study demonstrated that diarrhea could cause significant alternations in the gut microbial composition of giraffes, and the changes in the gut bacterial community were more significant than those in the gut fungal community. Additionally, investigating the gut microbial characteristics of giraffes in different health states is beneficial to provide a theoretical basis for establishing a prevention and treatment system for diarrhea from the gut microbial perspective.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA