Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Gastroenterology ; 166(1): 139-154, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37739089

RESUMEN

BACKGROUND & AIMS: The dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) is linked to the presence of pancreatic cancer stem-like cells (CSCs) that respond poorly to current chemotherapy regimens. The epigenetic mechanisms regulating CSCs are currently insufficiently understood, which hampers the development of novel strategies for eliminating CSCs. METHODS: By small molecule compound screening targeting 142 epigenetic enzymes, we identified that bromodomain-containing protein BRD9, a component of the BAF histone remodeling complex, is a key chromatin regulator to orchestrate the stemness of pancreatic CSCs via cooperating with the TGFß/Activin-SMAD2/3 signaling pathway. RESULTS: Inhibition and genetic ablation of BRD9 block the self-renewal, cell cycle entry into G0 phase and invasiveness of CSCs, and improve the sensitivity of CSCs to gemcitabine treatment. In addition, pharmacological inhibition of BRD9 significantly reduced the tumorigenesis in patient-derived xenografts mouse models and eliminated CSCs in tumors from pancreatic cancer patients. Mechanistically, inhibition of BRD9 disrupts enhancer-promoter looping and transcription of stemness genes in CSCs. CONCLUSIONS: Collectively, the data suggest BRD9 as a novel therapeutic target for PDAC treatment via modulation of CSC stemness.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Proteínas que Contienen Bromodominio , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica/patología , Gemcitabina , Células Madre Neoplásicas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteína Smad2/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Circulation ; 145(22): 1663-1683, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35400201

RESUMEN

BACKGROUND: Transcriptional reconfiguration is central to heart failure, the most common cause of which is dilated cardiomyopathy (DCM). The effect of 3-dimensional chromatin topology on transcriptional dysregulation and pathogenesis in human DCM remains elusive. METHODS: We generated a compendium of 3-dimensional epigenome and transcriptome maps from 101 biobanked human DCM and nonfailing heart tissues through highly integrative chromatin immunoprecipitation (H3K27ac [acetylation of lysine 27 on histone H3]), in situ high-throughput chromosome conformation capture, chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin using sequencing, and RNA sequencing. We used human induced pluripotent stem cell-derived cardiomyocytes and mouse models to interrogate the key transcription factor implicated in 3-dimensional chromatin organization and transcriptional regulation in DCM pathogenesis. RESULTS: We discovered that the active regulatory elements (H3K27ac peaks) and their connectome (H3K27ac loops) were extensively reprogrammed in DCM hearts and contributed to transcriptional dysregulation implicated in DCM development. For example, we identified that nontranscribing NPPA-AS1 (natriuretic peptide A antisense RNA 1) promoter functions as an enhancer and physically interacts with the NPPA (natriuretic peptide A) and NPPB (natriuretic peptide B) promoters, leading to the cotranscription of NPPA and NPPB in DCM hearts. We revealed that DCM-enriched H3K27ac loops largely resided in conserved high-order chromatin architectures (compartments, topologically associating domains) and their anchors unexpectedly had equivalent chromatin accessibility. We discovered that the DCM-enriched H3K27ac loop anchors exhibited a strong enrichment for HAND1 (heart and neural crest derivatives expressed 1), a key transcription factor involved in early cardiogenesis. In line with this, its protein expression was upregulated in human DCM and mouse failing hearts. To further validate whether HAND1 is a causal driver for the reprogramming of enhancer-promoter connectome in DCM hearts, we performed comprehensive 3-dimensional epigenome mappings in human induced pluripotent stem cell-derived cardiomyocytes. We found that forced overexpression of HAND1 in human induced pluripotent stem cell-derived cardiomyocytes induced a distinct gain of enhancer-promoter connectivity and correspondingly increased the expression of their connected genes implicated in DCM pathogenesis, thus recapitulating the transcriptional signature in human DCM hearts. Electrophysiology analysis demonstrated that forced overexpression of HAND1 in human induced pluripotent stem cell-derived cardiomyocytes induced abnormal calcium handling. Furthermore, cardiomyocyte-specific overexpression of Hand1 in the mouse hearts resulted in dilated cardiac remodeling with impaired contractility/Ca2+ handling in cardiomyocytes, increased ratio of heart weight/body weight, and compromised cardiac function, which were ascribed to recapitulation of transcriptional reprogramming in DCM. CONCLUSIONS: This study provided novel chromatin topology insights into DCM pathogenesis and illustrated a model whereby a single transcription factor (HAND1) reprograms the genome-wide enhancer-promoter connectome to drive DCM pathogenesis.


Asunto(s)
Cardiomiopatía Dilatada , Células Madre Pluripotentes Inducidas , Animales , Cardiomiopatía Dilatada/metabolismo , Cromatina/genética , Cromatina/metabolismo , Histonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Factores de Transcripción/genética
3.
J Transl Med ; 21(1): 883, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057866

RESUMEN

BACKGROUND: Sepsis-caused multi-organ failure remains the major cause of morbidity and mortality in intensive care units with limited therapeutics. Nicotinamide mononucleotide (NMN), a precursor of nicotinamide adenine dinucleotide (NAD+), has been recently reported to be protective in sepsis; however, its therapeutic effects remain to be determined. This study sought to investigate the therapeutic effects of NMN in septic organ failure and its underlying mechanisms. METHODS: Sepsis was induced by feces-injection-in-peritoneum in mice. NMN was given after an hour of sepsis onset. Cultured neutrophils, macrophages and endothelial cells were incubated with various agents. RESULTS: We demonstrate that administration of NMN elevated NAD+ levels and reduced serum lactate levels, oxidative stress, inflammation, and caspase-3 activity in multiple organs of septic mice, which correlated with the attenuation of heart dysfunction, pulmonary microvascular permeability, liver injury, and kidney dysfunction, leading to lower mortality. The therapeutic effects of NMN were associated with lower bacterial burden in blood, and less ROS production in septic mice. NMN improved bacterial phagocytosis and bactericidal activity of macrophages and neutrophils while reducing the lipopolysaccharides-induced inflammatory response of macrophages. In cultured endothelial cells, NMN mitigated mitochondrial dysfunction, inflammation, apoptosis, and barrier dysfunction induced by septic conditions, all of which were offset by SIRT3 inhibition. CONCLUSION: NAD+ repletion with NMN prevents mitochondrial dysfunction and restrains bacterial dissemination while limiting inflammatory damage through SIRT3 signaling in sepsis. Thus, NMN may represent a therapeutic option for sepsis.


Asunto(s)
Enfermedades Mitocondriales , Sepsis , Sirtuina 3 , Ratones , Animales , NAD , Mononucleótido de Nicotinamida/farmacología , Mononucleótido de Nicotinamida/uso terapéutico , Células Endoteliales , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Sepsis/complicaciones , Sepsis/tratamiento farmacológico
4.
Mol Ther ; 30(1): 54-74, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34678511

RESUMEN

Fibroblasts can be reprogrammed into cardiovascular progenitor cells (CPCs) using transgenic approaches, although the underlying mechanism remains unclear. We determined whether activation of endogenous genes such as Gata4, Nkx2.5, and Tbx5 can rapidly establish autoregulatory loops and initiate CPC generation in adult extracardiac fibroblasts using a CRISPR activation system. The induced fibroblasts (>80%) showed phenotypic changes as indicated by an Nkx2.5 cardiac enhancer reporter. The progenitor characteristics were confirmed by colony formation and expression of cardiovascular genes. Cardiac sphere induction segregated the early and late reprogrammed cells that can generate functional cardiomyocytes and vascular cells in vitro. Therefore, they were termed CRISPR-induced CPCs (ciCPCs). Transcriptomic analysis showed that cell cycle and heart development pathways were important to accelerate CPC formation during the early reprogramming stage. The CRISPR system opened the silenced chromatin locus, thereby allowing transcriptional factors to access their own promoters and eventually forming a positive feedback loop. The regenerative potential of ciCPCs was assessed after implantation in mouse myocardial infarction models. The engrafted ciCPCs differentiated into cardiovascular cells in vivo but also significantly improved contractile function and scar formation. In conclusion, multiplex gene activation was sufficient to drive CPC reprogramming, providing a new cell source for regenerative therapeutics.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Infarto del Miocardio , Animales , Diferenciación Celular/genética , Reprogramación Celular/genética , Fibroblastos/metabolismo , Ratones , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/terapia , Miocitos Cardíacos/metabolismo , Células Madre/metabolismo
5.
Cardiovasc Diabetol ; 21(1): 165, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-36030201

RESUMEN

BACKGROUND: Cardiomyocyte death contributes to cardiac pathology of diabetes. Studies have shown that the RIPK3/MLKL necroptosis signaling is activated in diabetic hearts. Deletion of RIPK3 was reported to attenuate myocardial injury and heart dysfunction in streptozocin (STZ)-induced diabetic mice, suggesting a potential role of necroptosis in diabetic cardiomyopathy. This study characterized cardiomyocyte necroptosis in diabetic hearts and investigated whether MLKL-mediated necroptosis is a target for cardiac protection in diabetes. METHODS: Type 1 diabetes was induced in RIPK3 knockout, MLKL knockout and wild-type mice. Akita Type-1 diabetic mice were injected with shRNA for MLKL. Myocardial function was assessed by echocardiography. Immuno-histological analyses determined cardiomyocyte death and fibrosis in the heart. Cultured adult mouse cardiomyocytes were incubated with high glucose in the presence of various drugs. Cell death and phosphorylation of RIPK3 and MLKL were analysed. RESULTS: We showed that the levels of phosphorylated RIPK3 and MLKL were higher in high glucose-stimulated cardiomyocytes and hearts of STZ-induced type-1 diabetic mice, akita mice and type-1 diabetic monkeys when compared to non-diabetic controls. Inhibition of RIPK3 by its pharmacological inhibitor or gene deletion, or MLKL deletion prevented high glucose-induced MLKL phosphorylation and attenuated necroptosis in cardiomyocytes. In STZ-induced type-1 diabetic mice, cardiomyocyte necroptosis was present along with elevated cardiac troponin I in serum and MLKL oligomerization, and co-localized with phosphorylated MLKL. Deletion of RIPK3 or MLKL prevented MLKL phosphorylation and cardiac necroptosis, attenuated serum cardiac troponin I levels, reduced myocardial collagen deposition and improved myocardial function in STZ-injected mice. Additionally, shRNA-mediated down-regulation of MLKL reduced cardiomyocyte necroptosis in akita mice. Interestingly, incubation with anti-diabetic drugs (empagliflozin and metformin) prevented phosphorylation of RIPK3 and MLKL, and reduced cell death in high glucose-induced cardiomyocytes. CONCLUSIONS: We have provided evidence that cardiomyocyte necroptosis is present in diabetic hearts and that MLKL-mediated cardiomyocyte necroptosis contributes to diabetic cardiomyopathy. These findings highlight MLKL-mediated necroptosis as a target for cardiac protection in diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Cardiomiopatías Diabéticas , Necroptosis , Proteínas Quinasas , Animales , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/patología , Cardiomiopatías Diabéticas/patología , Modelos Animales de Enfermedad , Glucosa , Ratones , Proteínas Quinasas/metabolismo , ARN Interferente Pequeño , Troponina I
6.
J Immunol ; 205(6): 1633-1643, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32769121

RESUMEN

The inability to effectively control invading bacteria or other pathogens is a major cause of multiple organ dysfunction and death in sepsis. As the first-line defense of the immune system, macrophages play a crucial role in the removal of pathogens during sepsis. In this study, we define secreted and transmembrane 1A (Sectm1a) as a novel ligand of glucocorticoid-induced TNFR (GITR) that greatly boosts macrophage phagocytosis and bactericidal capacity. Using a global Sectm1a knockout (KO) mouse model, we observed that Sectm1a deficiency significantly suppressed phagocytosis and bactericidal activity in both recruited macrophages and tissue-resident macrophages, which consequently aggravated bacterial burden in the blood and multiple organs and further increased systemic inflammation, leading to multiple organ injury and increased mortality during polymicrobial sepsis. By contrast, treatment of septic mice with recombinant Sectm1a protein (rSectm1a) not only promoted macrophage phagocytosis and bactericidal activity but also significantly improved survival outcome. Mechanistically, we identified that Sectm1a could bind to GITR in the surface of macrophages and thereby activate its downstream PI3K-Akt pathway. Accordingly, rSectm1a-mediated phagocytosis and bacterial killing were abolished in macrophages by either KO of GITR or pharmacological inhibition of the PI3K-Akt pathway. In addition, rSectm1a-induced therapeutic effects on sepsis injury were negated in GITR KO mice. Taken together, these results uncover that Sectm1a may represent a novel target for drug development to control bacterial dissemination during sepsis or other infectious diseases.


Asunto(s)
Proteína Relacionada con TNFR Inducida por Glucocorticoide/metabolismo , Macrófagos/fisiología , Proteínas de la Membrana/metabolismo , Insuficiencia Multiorgánica/inmunología , Sepsis/inmunología , Animales , Proteína Relacionada con TNFR Inducida por Glucocorticoide/genética , Humanos , Tolerancia Inmunológica , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Oncogénica v-akt/metabolismo , Fagocitosis , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal
7.
Acta Pharmacol Sin ; 43(11): 2873-2884, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35986214

RESUMEN

Calpains have been implicated in heart diseases. While calpain-1 has been detrimental to the heart, the role of calpain-2 in cardiac pathology remains controversial. In this study we investigated whether sustained over-expression of calpain-2 had any adverse effects on the heart and the underlying mechanisms. Double transgenic mice (Tg-Capn2/tTA) were generated, which express human CAPN2 restricted to cardiomyocytes. The mice were subjected to echocardiography at age 3, 6, 8 and 12 months, and their heart tissues and sera were collected for analyses. We showed that transgenic mice over-expressing calpain-2 restricted to cardiomyocytes had normal heart function with no evidence of cardiac pathological remodeling at age 3 months. However, they exhibited features of dilated cardiomyopathy including increased heart size, enlarged heart chambers and heart dysfunction from age 8 months; histological analysis revealed loss of cardiomyocytes replaced by myocardial fibrosis and cardiomyocyte hypertrophy in transgenic mice from age 8 months. These cardiac alterations closely correlated with aberrant autophagy evidenced by significantly increased LC3BII and p62 protein levels and accumulation of autophagosomes in the hearts of transgenic mice. Notably, injection of 3-methyladenine, a well-established inhibitor of autophagy (30 mg/kg, i.p. once every 3 days starting from age 6 months for 2 months) prevented aberrant autophagy, attenuated myocardial injury and improved heart function in the transgenic mice. In cultured cardiomyocytes, over-expression of calpain-2 blocked autophagic flux by impairing lysosomal function. Furthermore, over-expression of calpain-2 resulted in lower levels of junctophilin-2 protein in the heart of transgenic mice and in cultured cardiomyocytes, which was attenuated by 3-methyladenine. In addition, blockade of autophagic flux by bafilomycin A (100 nM) induced a reduction of junctophilin-2 protein in cardiomyocytes. In summary, transgenic over-expression of calpain-2 induces age-dependent dilated cardiomyopathy in mice, which may be mediated through aberrant autophagy and a reduction of junctophilin-2. Thus, a sustained increase in calpain-2 may be detrimental to the heart.


Asunto(s)
Cardiomiopatía Dilatada , Ratones , Animales , Humanos , Lactante , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Calpaína , Miocitos Cardíacos , Autofagia , Ratones Transgénicos
8.
Mol Ther ; 29(3): 1294-1311, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33279722

RESUMEN

Tissue-resident macrophages (TRMs) are sentinel cells for maintaining tissue homeostasis and organ function. In this study, we discovered that lipopolysaccharide (LPS) administration dramatically reduced TRM populations and suppressed their self-renewal capacities in multiple organs. Using loss- and gain-of-function approaches, we define Sectm1a as a novel regulator of TRM self-renewal. Specifically, at the earlier stage of endotoxemia, Sectm1a deficiency exaggerated acute inflammation-induced reduction of TRM numbers in multiple organs by suppressing their proliferation, which was associated with more infiltrations of inflammatory monocytes/neutrophils and more serious organ damage. By contrast, administration of recombinant Sectm1a enhanced TRM populations and improved animal survival upon endotoxin challenge. Mechanistically, we identified that Sectm1a-induced upregulation in the self-renewal capacity of TRM is dependent on GITR-activated T helper cell expansion and cytokine production. Meanwhile, we found that TRMs may play an important role in protecting local vascular integrity during endotoxemia. Our study demonstrates that Sectm1a contributes to stabling TRM populations through maintaining their self-renewal capacities, which benefits the host immune response to acute inflammation. Therefore, Sectm1a may serve as a new therapeutic agent for the treatment of inflammatory diseases.


Asunto(s)
Proteína Relacionada con TNFR Inducida por Glucocorticoide/metabolismo , Memoria Inmunológica/inmunología , Inflamación/complicaciones , Macrófagos/inmunología , Proteínas de la Membrana/metabolismo , Monocitos/inmunología , Insuficiencia Multiorgánica/prevención & control , Animales , Proteína Relacionada con TNFR Inducida por Glucocorticoide/genética , Homeostasis , Proteínas de la Membrana/genética , Ratones , Insuficiencia Multiorgánica/etiología , Linfocitos T Colaboradores-Inductores/inmunología
9.
Int J Mol Sci ; 23(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35216295

RESUMEN

Lipid overload contributes to cardiac complications of diabetes and obesity. However, the underlying mechanisms remain obscure. This study investigates the role of gamma-aminobutyrate transaminase (ABAT), the key enzyme involved in the catabolism of γ-aminobutyric acid (GABA), in lipid overload-induced cardiac injury. Microarray revealed a down-regulation of ABAT mRNA expression in high fat diet (HFD)-fed mouse hearts, which correlated with a reduction in ABAT protein level and its GABA catabolic activity. Transgenic mice with cardiomyocyte-specific ABAT over-expression (Tg-ABAT/tTA) were generated to determine the role of ABAT in lipid overload-induced cardiac injury. Feeding with a HFD to control mice for 4 months reduced ATP production and the mitochondrial DNA copy number, and induced myocardial oxidative stress, hypertrophy, fibrosis and dysfunction. Such pathological effects of HFD were mitigated by ABAT over-expression in Tg-ABAT/tTA mice. In cultured cardiomyocytes, palmitate increased mitochondrial ROS production, depleted ATP production and promoted apoptosis, all of which were attenuated by ABAT over-expression. With the inhibition of ABAT's GABA catabolic activity, the protective effects of ABAT remained unchanged in palmitate-induced cardiomyocytes. Thus, ABAT protects the mitochondrial function in defending the heart against lipid overload-induced injury through mechanisms independent of its GABA catabolic activity, and may represent a new therapeutic target for lipid overload-induced cardiac injury.


Asunto(s)
4-Aminobutirato Transaminasa , Lesiones Cardíacas , 4-Aminobutirato Transaminasa/genética , 4-Aminobutirato Transaminasa/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Lesiones Cardíacas/etiología , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Palmitatos/metabolismo , Ácido gamma-Aminobutírico/metabolismo
10.
J Biol Chem ; 295(49): 16840-16851, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-32989050

RESUMEN

The human cardiovascular system has adapted to function optimally in Earth's 1G gravity, and microgravity conditions cause myocardial abnormalities, including atrophy and dysfunction. However, the underlying mechanisms linking microgravity and cardiac anomalies are incompletely understood. In this study, we investigated whether and how calpain activation promotes myocardial abnormalities under simulated microgravity conditions. Simulated microgravity was induced by tail suspension in mice with cardiomyocyte-specific deletion of Capns1, which disrupts activity and stability of calpain-1 and calpain-2, and their WT littermates. Tail suspension time-dependently reduced cardiomyocyte size, heart weight, and myocardial function in WT mice, and these changes were accompanied by calpain activation, NADPH oxidase activation, and oxidative stress in heart tissues. The effects of tail suspension were attenuated by deletion of Capns1 Notably, the protective effects of Capns1 deletion were associated with the prevention of phosphorylation of Ser-345 on p47 phox and attenuation of ERK1/2 and p38 activation in hearts of tail-suspended mice. Using a rotary cell culture system, we simulated microgravity in cultured neonatal mouse cardiomyocytes and observed decreased total protein/DNA ratio and induced calpain activation, phosphorylation of Ser-345 on p47 phox , and activation of ERK1/2 and p38, all of which were prevented by calpain inhibitor-III. Furthermore, inhibition of ERK1/2 or p38 attenuated phosphorylation of Ser-345 on p47 phox in cardiomyocytes under simulated microgravity. This study demonstrates for the first time that calpain promotes NADPH oxidase activation and myocardial abnormalities under microgravity by facilitating p47 phox phosphorylation via ERK1/2 and p38 pathways. Thus, calpain inhibition may be an effective therapeutic approach to reduce microgravity-induced myocardial abnormalities.


Asunto(s)
Calpaína/metabolismo , Sistema de Señalización de MAP Quinasas , Miocardio/metabolismo , Ingravidez , Animales , Calpaína/deficiencia , Calpaína/genética , Corazón/fisiología , Suspensión Trasera , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , NADPH Oxidasas/metabolismo , Tamaño de los Órganos , Estrés Oxidativo , Fosforilación , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Acta Pharmacol Sin ; 42(6): 909-920, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32968209

RESUMEN

The protein levels and activities of calpain-1 and calpain-2 are increased in cardiac mitochondria under pathological conditions including ischemia, diabetes, and sepsis, and transgenic overexpression of mitochondrial-targeted calpain-1 induces dilated heart failure, which underscores an important role of increased calpain in mitochondria in mediating myocardial injury. However, it remains to be determined whether selective inhibition of calpain in mitochondria protects the heart under pathological conditions. In this study, we generated transgenic mice overexpressing mitochondrial-targeted calpastatin in cardiomyocytes. Their hearts were isolated and subjected to global ischemia/reperfusion. Hyperglycemia was induced in the transgenic mice by injections of STZ. We showed that transgenic calpastatin was expressed exclusively in mitochondria isolated from their hearts but not from other organs including skeletal muscle and lung tissues. Transgenic overexpression of mitochondrial-targeted calpastatin significantly attenuated mitochondrial oxidative stress and cell death induced by global ischemia/reperfusion in isolated hearts, and ameliorated mitochondrial oxidative stress, cell death, myocardial remodeling and dysfunction in STZ-treated transgenic mice. The protective effects of mitochondrial-targeted calpastatin were correlated with increased ATP5A1 protein expression and ATP synthase activity in isolated hearts subjected to global ischemia/reperfusion and hearts of STZ-treated transgenic mice. In cultured rat myoblast H9c2 cells, overexpression of mitochondrial-targeted calpastatin maintained the protein levels of ATP5A1 and ATP synthase activity, prevented mitochondrial ROS production and decreased cell death following hypoxia/reoxygenation, whereas upregulation of ATP5A1 or scavenging of mitochondrial ROS by mito-TEMPO abrogated mitochondrial ROS production and decreased cell death. These results confirm the role of calpain in myocardial injury, suggesting that selective inhibition of calpain in myocardial mitochondria by mitochondrial-targeted calpastatin is an effective strategy for alleviating myocardial injury and dysfunction in cardiac pathologies.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calpaína/antagonistas & inhibidores , Cardiomegalia/metabolismo , Mitocondrias Cardíacas/metabolismo , Estrés Oxidativo/fisiología , Animales , Apoptosis/fisiología , Proteínas de Unión al Calcio/genética , Cardiomegalia/etiología , Diabetes Mellitus Experimental/complicaciones , Fibrosis/etiología , Fibrosis/metabolismo , Masculino , Ratones Transgénicos , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
12.
J Biol Chem ; 294(27): 10438-10448, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31118273

RESUMEN

The initiation and development of diabetes are mainly ascribed to the loss of functional ß-cells. Therapies designed to regenerate ß-cells provide great potential for controlling glucose levels and thereby preventing the devastating complications associated with diabetes. This requires detailed knowledge of the molecular events and underlying mechanisms in this disorder. Here, we report that expression of microRNA-223 (miR-223) is up-regulated in islets from diabetic mice and humans, as well as in murine Min6 ß-cells exposed to tumor necrosis factor α (TNFα) or high glucose. Interestingly, miR-223 knockout (KO) mice exhibit impaired glucose tolerance and insulin resistance. Further analysis reveals that miR-223 deficiency dramatically suppresses ß-cell proliferation and insulin secretion. Mechanistically, using luciferase reporter gene assays, histological analysis, and immunoblotting, we demonstrate that miR-223 inhibits both forkhead box O1 (FOXO1) and SRY-box 6 (SOX6) signaling, a unique bipartite mechanism that modulates expression of several ß-cell markers (pancreatic and duodenal homeobox 1 (PDX1), NK6 homeobox 1 (NKX6.1), and urocortin 3 (UCN3)) and cell cycle-related genes (cyclin D1, cyclin E1, and cyclin-dependent kinase inhibitor P27 (P27)). Importantly, miR-223 overexpression in ß-cells could promote ß-cell proliferation and improve ß-cell function. Taken together, our results suggest that miR-223 is a critical factor for maintaining functional ß-cell mass and adaptation during metabolic stress.


Asunto(s)
Proteína Forkhead Box O1/metabolismo , MicroARNs/metabolismo , Factores de Transcripción SOXD/metabolismo , Regiones no Traducidas 3' , Animales , Línea Celular , Proliferación Celular , Ciclina D1/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Proteína Forkhead Box O1/química , Proteína Forkhead Box O1/genética , Prueba de Tolerancia a la Glucosa , Proteínas de Homeodominio/metabolismo , Humanos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Ratas , Factores de Transcripción SOXD/química , Factores de Transcripción SOXD/genética , Transducción de Señal , Transactivadores/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Regulación hacia Arriba/efectos de los fármacos
13.
J Biol Chem ; 294(48): 18057-18068, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31619520

RESUMEN

Cardiac mitochondrial damage and subsequent inflammation are hallmarks of endotoxin-induced myocardial depression. Activation of the Parkin/PTEN-induced kinase 1 (PINK1) pathway has been shown to promote autophagy of damaged mitochondria (mitophagy) and to protect from endotoxin-induced cardiac dysfunction. Tumor susceptibility gene 101 (TSG101) is a key member of the endosomal recycling complexes required for transport, which may affect autophagic flux. In this study, we investigated whether TSG101 regulates mitophagy and influences the outcomes of endotoxin-induced myocardial dysfunction. TSG101 transgenic and knockdown mice underwent endotoxin/lipopolysaccharide treatment (10 µg/g) and were assessed for survival, cardiac function, systemic/local inflammation, and activity of mitophagy mediators in the heart. Upon endotoxin challenge and compared with WT mice, TSG101 transgenic mice exhibited increased survival, preserved cardiac contractile function, reduced inflammation, and enhanced mitophagy activation in the heart. By contrast, TSG101 knockdown mice displayed opposite phenotypes during endotoxemia. Mechanistically, both coimmunoprecipitation assays and coimmunofluorescence staining revealed that TSG101 directly binds to Parkin in the cytosol of myocytes and facilitates translocation of Parkin from the cytosol to the mitochondria. Our results indicate that TSG101 elevation could protect against endotoxin-triggered myocardial injury by promoting Parkin-induced mitophagy.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Cardiopatías/metabolismo , Lipopolisacáridos/toxicidad , Mitocondrias Cardíacas/metabolismo , Mitofagia/efectos de los fármacos , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Proteínas de Unión al ADN/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Cardiopatías/inducido químicamente , Cardiopatías/genética , Cardiopatías/patología , Masculino , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/patología , Mitofagia/genética , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/genética
14.
FASEB J ; 33(6): 7451-7466, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30884248

RESUMEN

Development of physiologic cardiac hypertrophy has primarily been ascribed to the IGF-1 and its receptor, IGF-1 receptor (IGF-1R), and subsequent activation of the protein kinase B (Akt) pathway. However, regulation of endosome-mediated recycling and degradation of IGF-1R during physiologic hypertrophy has not been investigated. In a physiologic hypertrophy model of treadmill-exercised mice, we observed that levels of tumor susceptibility gene 101 (Tsg101), a key member of the endosomal sorting complex required for transport, were dramatically elevated in the heart compared with sedentary controls. To determine the role of Tsg101 on physiologic hypertrophy, we generated a transgenic (TG) mouse model with cardiac-specific overexpression of Tsg101. These TG mice exhibited a physiologic-like cardiac hypertrophy phenotype at 8 wk evidenced by: 1) the absence of cardiac fibrosis, 2) significant improvement of cardiac function, and 3) increased total and plasma membrane levels of IGF-1R and increased phosphorylation of Akt. Mechanistically, we identified that Tsg101 interacted with family-interacting protein 3 (FIP3) and IGF-1R, thereby stabilizing FIP3 and enhancing recycling of IGF-1R. In vitro, adenovirus-mediated overexpression of Tsg101 in neonatal rat cardiomyocytes resulted in cell hypertrophy, which was blocked by addition of monensin, an inhibitor of endosome-mediated recycling, and by small interfering RNA-mediated knockdown (KD) of FIP3. Furthermore, cardiac-specific KD of Tsg101 showed a significant reduction in levels of endosomal recycling compartment members (Rab11a and FIP3), IGF-1R, and Akt phosphorylation. Most interestingly, Tsg101-KD mice failed to develop cardiac hypertrophy after intense treadmill training. Taken together, our data identify Tsg101 as a novel positive regulator of physiologic cardiac hypertrophy through facilitating the FIP3-mediated endosomal recycling of IGF-1R.-Essandoh, K., Deng, S., Wang, X., Jiang, M., Mu, X., Peng, J., Li, Y., Peng, T., Wagner, K.-U., Rubinstein, J., Fan, G.-C. Tsg101 positively regulates physiologic-like cardiac hypertrophy through FIP3-mediated endosomal recycling of IGF-1R.


Asunto(s)
Cardiomegalia/fisiopatología , Proteínas de Unión al ADN/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/fisiología , Endosomas/metabolismo , Quinasa I-kappa B/fisiología , Receptor IGF Tipo 1/metabolismo , Factores de Transcripción/fisiología , Animales , Femenino , Perfilación de la Expresión Génica , Masculino , Ratones , Ratas
15.
Diabetologia ; 62(5): 860-872, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30778623

RESUMEN

AIMS/HYPOTHESIS: The role of non-cardiomyocytes in diabetic cardiomyopathy has not been fully addressed. This study investigated whether endothelial cell calpain plays a role in myocardial endothelial injury and microvascular rarefaction in diabetes, thereby contributing to diabetic cardiomyopathy. METHODS: Endothelial cell-specific Capns1-knockout (KO) mice were generated. Conditions mimicking prediabetes and type 1 and type 2 diabetes were induced in these KO mice and their wild-type littermates. Myocardial function and coronary flow reserve were assessed by echocardiography. Histological analyses were performed to determine capillary density, cardiomyocyte size and fibrosis in the heart. Isolated aortas were assayed for neovascularisation. Cultured cardiac microvascular endothelial cells were stimulated with high palmitate. Angiogenesis and apoptosis were analysed. RESULTS: Endothelial cell-specific deletion of Capns1 disrupted calpain 1 and calpain 2 in endothelial cells, reduced cardiac fibrosis and hypertrophy, and alleviated myocardial dysfunction in mouse models of diabetes without significantly affecting systemic metabolic variables. These protective effects of calpain disruption in endothelial cells were associated with an increase in myocardial capillary density (wild-type vs Capns1-KO 3646.14 ± 423.51 vs 4708.7 ± 417.93 capillary number/high-power field in prediabetes, 2999.36 ± 854.77 vs 4579.22 ± 672.56 capillary number/high-power field in type 2 diabetes and 2364.87 ± 249.57 vs 3014.63 ± 215.46 capillary number/high-power field in type 1 diabetes) and coronary flow reserve. Ex vivo analysis of neovascularisation revealed more endothelial cell sprouts from aortic rings of prediabetic and diabetic Capns1-KO mice compared with their wild-type littermates. In cultured cardiac microvascular endothelial cells, inhibition of calpain improved angiogenesis and prevented apoptosis under metabolic stress. Mechanistically, deletion of Capns1 elevated the protein levels of ß-catenin in endothelial cells of Capns1-KO mice and constitutive activity of calpain 2 suppressed ß-catenin protein expression in cultured endothelial cells. Upregulation of ß-catenin promoted angiogenesis and inhibited apoptosis whereas knockdown of ß-catenin offset the protective effects of calpain inhibition in endothelial cells under metabolic stress. CONCLUSIONS/INTERPRETATION: These results delineate a primary role of calpain in inducing cardiac endothelial cell injury and impairing neovascularisation via suppression of ß-catenin, thereby promoting diabetic cardiomyopathy, and indicate that calpain is a promising therapeutic target to prevent diabetic cardiac complications.


Asunto(s)
Calpaína/genética , Calpaína/fisiología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/terapia , Células Endoteliales/enzimología , Neovascularización Patológica , Neovascularización Fisiológica , Animales , Apoptosis , Diabetes Mellitus Tipo 2/metabolismo , Fibroblastos/metabolismo , Eliminación de Gen , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Transducción de Señal , beta Catenina/metabolismo
16.
Am J Physiol Heart Circ Physiol ; 316(3): H543-H553, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30575436

RESUMEN

Timely reperfusion is still the most effective approach to limit infarct size in humans. Yet, despite advances in care and reduction in door-to-balloon times, nearly 25% of patients develop heart failure postmyocardial infarction, with its attendant morbidity and mortality. We previously showed that cardioprotection results from a skin incision through the umbilicus in a murine model of myocardial infarction. In the present study, we show that an electrical stimulus or topical capsaicin applied to the skin in the same region induces significantly reduced infarct size in a murine model. We define this class of phenomena as nociceptor-induced conditioning (NIC) based on the peripheral nerve mechanism of initiation. We show that NIC is effective both as a preconditioning and postconditioning remote stimulus, reducing infarct size by 86% and 80%, respectively. NIC is induced via activation of skin C-fiber nerves. Interestingly, the skin region that activates NIC is limited to the anterior of the T9-T10 vertebral region of the abdomen. Cardioprotection after NIC requires the integrity of the spinal cord from the region of stimulation to the thoracic vertebral region of the origin of the cardiac nerves but does not require that the cord be intact in the cervical region. Thus, we show that NIC is a reflex and not a central nervous system-mediated effect. The mechanism involves bradykinin 2 receptor activity and activation of PKC, specifically, PKC-α. The similarity of the neuroanatomy and conservation of the effectors of cardioprotection supports that NIC may be translatable to humans as a nontraumatic and practical adjunct therapy against ischemic disease. NEW & NOTEWORTHY This study shows that an electrical stimulus to skin sensory nerves elicits a very powerful cardioprotection against myocardial infarction. This stimulus works by a neurogenic mechanism similar to that previously elucidated for remote cardioprotection of trauma. Nociceptor-induced conditioning is equally potent when applied before ischemia or at reperfusion and has great potential clinically.


Asunto(s)
Capsaicina/uso terapéutico , Cardiotónicos/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Nocicepción , Fármacos del Sistema Sensorial/uso terapéutico , Piel/inervación , Animales , Capsaicina/farmacología , Cardiotónicos/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Nervios Periféricos/efectos de los fármacos , Nervios Periféricos/fisiología , Proteína Quinasa C/metabolismo , Receptor de Bradiquinina B2/metabolismo , Reflejo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Fármacos del Sistema Sensorial/farmacología
17.
Basic Res Cardiol ; 114(3): 17, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30874894

RESUMEN

We and others have reported that calpain-1 was increased in myocardial mitochondria from various animal models of heart disease. This study investigated whether constitutive up-regulation of calpain-1 restricted to mitochondria induced myocardial injury and heart failure and, if so, whether these phenotypes could be rescued by selective inhibition of mitochondrial superoxide production. Transgenic mice with human CAPN1 up-regulation restricted to mitochondria in cardiomyocytes (Tg-mtCapn1/tTA) were generated and characterized with low and high over-expression of transgenic human CAPN1 restricted to mitochondria, respectively. Transgenic up-regulation of mitochondria-targeted CAPN1 dose-dependently induced cardiac cell death, adverse myocardial remodeling, heart failure, and early death in mice, the changes of which were associated with mitochondrial dysfunction and mitochondrial superoxide generation. Importantly, a daily injection of mitochondria-targeted superoxide dismutase mimetics mito-TEMPO for 1 month starting from age 2 months attenuated cardiac cell death, adverse myocardial remodeling and heart failure, and reduced mortality in Tg-mtCapn1/tTA mice. In contrast, administration of TEMPO did not achieve similar cardiac protection in transgenic mice. Furthermore, transgenic up-regulation of mitochondria-targeted CAPN1 induced a reduction of ATP5A1 protein and ATP synthase activity in hearts. In cultured cardiomyocytes, increased calpain-1 in mitochondria promoted mitochondrial permeability transition pore (mPTP) opening and induced cell death, which were prevented by over-expression of ATP5A1, mito-TEMPO or cyclosporin A, an inhibitor of mPTP opening. In conclusion, this study has provided direct evidence demonstrating that increased mitochondrial calpain-1 is an important mechanism contributing to myocardial injury and heart failure by disrupting ATP synthase, and promoting mitochondrial superoxide generation and mPTP opening.


Asunto(s)
Calpaína/metabolismo , Cardiomiopatía Dilatada/etiología , Insuficiencia Cardíaca/etiología , Mitocondrias/metabolismo , Animales , Cardiomiopatía Dilatada/metabolismo , Muerte Celular , Óxidos N-Cíclicos , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Superóxidos/metabolismo
18.
J Transl Med ; 17(1): 279, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31438970

RESUMEN

BACKGROUND: Spaceflight or microgravity conditions cause myocardial atrophy and dysfunction, contributing to post-flight orthostatic intolerance. However, the underlying mechanisms remain incompletely understood and preventive approaches are limited. This study investigated whether and how losartan, a blocker of angiotensin-II receptor, preserved cardiomyocyte size and prevented myocardial dysfunction during microgravity. METHOD: Adult male mice were suspended with their tails to simulate microgravity. Echocardiography was performed to assess myocardial function. Heart weight and cardiomyocyte size were measured. NADPH oxidase activation was determined by analyzing membrane translocation of its cytosolic subunits including p47phox, p67phox and Rac1. Heart tissues were also assayed for oxidative stress, p47phox phosphorylation (Ser345), MuRF1 protein levels and angiotensin-II production. RESULTS: Tail-suspension for 28 days increased angiotensin-II production in hearts, decreased cardiomyocyte size and heart weight, and induced myocardial dysfunction. Administration of losartan preserved cardiomyocyte size and heart weight, and prevented myocardial dysfunction in tail-suspended mice. These cardioprotective effects of losartan were associated with inhibition of p47phox phosphorylation (Ser345), NADPH oxidase and oxidative stress in tail-suspended mouse hearts. Additionally, the NADPH oxidase inhibitor, apocynin, also reduced oxidative stress, preserved cardiomyocyte size and heart weight, and improved myocardial function in tail-suspended mice. Furthermore, losartan but not apocynin attenuated tail-suspension-induced up-regulation of MuRF1 protein in mouse hearts. CONCLUSIONS: Administration of losartan preserves cardiomyocyte size and prevents myocardial dysfunction under microgravity by blocking p47phox phosphorylation and NADPH oxidase activation, and by inhibiting MuRF1 expression. Thus, losartan may be a useful drug to prevent microgravity-induced myocardial abnormalities.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , ADN Helicasas/metabolismo , Suspensión Trasera , Losartán/administración & dosificación , Proteínas Musculares/metabolismo , Miocardio/patología , Miocitos Cardíacos/patología , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Angiotensina II/metabolismo , Animales , Apelina/metabolismo , Receptores de Apelina/metabolismo , Presión Sanguínea/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Diástole/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Losartán/farmacología , Masculino , Ratones , Tamaño de los Órganos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Valsartán/farmacología
19.
Clin Sci (Lond) ; 133(13): 1505-1521, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31266854

RESUMEN

Doxorubicin (DOX) is widely used as a first-line chemotherapeutic drug for various malignancies. However, DOX causes severe cardiotoxicity, which limits its clinical uses. Oxidative stress is one of major contributors to DOX-induced cardiotoxicity. While autophagic flux serves as an important defense mechanism against oxidative stress in cardiomyocytes, recent studies have demonstrated that DOX induces the blockage of autophagic flux, which contributes to DOX cardiotoxicity. The present study investigated whether nicotinamide riboside (NR), a precursor of nicotinamide adenine dinucleotide (NAD)+, prevents DOX cardiotoxicity by improving autophagic flux. We report that administration of NR elevated NAD+ levels, and reduced cardiac injury and myocardial dysfunction in DOX-injected mice. These protective effects of NR were recapitulated in cultured cardiomyocytes upon DOX treatment. Mechanistically, NR prevented the blockage of autophagic flux, accumulation of autolysosomes, and oxidative stress in DOX-treated cardiomyocytes, the effects of which were associated with restoration of lysosomal acidification. Furthermore, inhibition of lysosomal acidification or SIRT1 abrogated these protective effects of NR during DOX-induced cardiotoxicity. Collectively, our study shows that NR enhances autolysosome clearance via the NAD+/SIRT1 signaling, thereby preventing DOX-triggered cardiotoxicity.


Asunto(s)
Antioxidantes/farmacología , Autofagia/efectos de los fármacos , Doxorrubicina , Cardiopatías/prevención & control , Lisosomas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Niacinamida/análogos & derivados , Estrés Oxidativo/efectos de los fármacos , Animales , Cardiotoxicidad , Células Cultivadas , Citoprotección , Modelos Animales de Enfermedad , Cardiopatías/inducido químicamente , Cardiopatías/metabolismo , Cardiopatías/patología , Concentración de Iones de Hidrógeno , Lisosomas/metabolismo , Lisosomas/patología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , NAD/metabolismo , Niacinamida/farmacología , Compuestos de Piridinio , Sirtuina 1/metabolismo
20.
Arch Toxicol ; 93(4): 1051-1065, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30810770

RESUMEN

We recently reported that doxorubicin decreased the expression of calpain-1/2, while inhibition of calpain activity promoted doxorubicin-induced cardiac injury in mice. In this study, we investigated whether and how elevation of calpain-2 could affect doxorubicin-triggered cardiac injury. Transgenic mice with inducible cardiomyocyte-specific expression of calpain-2 were generated. An acute cardiotoxicity was induced in both transgenic mice and their relevant wild-type littermates by injection of a single dose of doxorubicin (20 mg/kg) and cardiac injury was analyzed 5 days after doxorubicin injection. Cardiomyocyte-specific up-regulation of calpain-2 did not induce any adverse cardiac phenotypes under physiological conditions by age 3 months, but significantly reduced myocardial injury and improved myocardial function in doxorubicin-treated mice. Cardiac protection of calpain-2 up-regulation was also observed in a mouse model of chronic doxorubicin cardiotoxicity. Up-regulation of calpain-2 increased the protein levels of mitogen activated protein kinase phosphatase-1 (MKP-1) in cultured mouse cardiomyocytes and heart tissues. Over-expression of MKP-1 prevented, whereas knockdown of MKP-1 augmented doxorubicin-induced apoptosis in cultured cardiomyocytes. Moreover, knockdown of MKP-1 offset calpain-2-elicited protective effects against doxorubicin-induced injury in cultured cardiomyocytes. Mechanistically, up-regulation of calpain-2 reduced the protein levels of phosphatase and tensin homolog and consequently promoted Akt activation, leading to increased MKP-1 protein steady-state levels by inhibiting its degradation. Collectively, this study reveals a new role of calpain-2 in promoting MKP-1 expression via phosphatase and tensin homolog/Akt signaling. This study also suggests that calpain-2/MKP-1 signaling may represent new therapeutic targets for doxorubicin-induced cardiac injury.


Asunto(s)
Calpaína/metabolismo , Doxorrubicina/toxicidad , Fosfatasa 1 de Especificidad Dual/genética , Corazón/efectos de los fármacos , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Calpaína/genética , Cardiotoxicidad , Células Cultivadas , Expresión Génica/efectos de los fármacos , Ratones Transgénicos , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA