Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 49(10): 2845-2848, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748177

RESUMEN

A baud-rate sampling timing recovery (TR) scheme with receiver IQ skew tolerance is proposed and experimentally demonstrated. The proposed scheme performs independent TR for the in-phase and quadrature (IQ) tributary signals, thereby tracking the sampling phase error while naturally compensating for receiver IQ skew. The robustness of the IQ-independent TR to frequency offset (FO) and phase noise is theoretically analyzed. To address IQ misalignment caused by the IQ-independent TR, the use of pseudo-noise (PN) sequences for IQ frame synchronization is proposed. The proposed scheme achieves accurate timing recovery with hardware-efficient baud-rate sampling in the presence of receiver IQ skew, laying the foundation for stable performance of subsequent baud-rate equalization. The performance of the scheme is validated in a 56 GBaud polarization division multiplexed (PDM) 16QAM coherent experimental system. Experimental results demonstrate that the proposed scheme achieves similar BER performance to the modified Gardner + real-valued multiple-input multiple-output (RVMIMO) (@2 SPS) scheme. Moreover, the proposed scheme exhibits robustness to arbitrary IQ skew compared to the ABSPD + RVMIMO (@1 SPS) scheme.

2.
Opt Lett ; 49(1): 129-132, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38134169

RESUMEN

A robust, in-service, and joint monitoring of a dual-polarization (DP) transceiver IQ skew for a coherent DSCM system is proposed and experimentally validated. Unlike traditional monitoring schemes, the proposed scheme realizes robust transceiver impairments monitoring without channel impairment compensation, including chromatic dispersion (CD), polarization variation, and carrier phase noise. This enhances the stability and precision of the monitoring process and reduces computational complexity by eliminating sophisticated DSP for impairment compensation. A complex system model for a single-tone signal is given first. Based on the model, the proposed scheme enables monitoring of the DP transmitter and the receiver IQ skew using the inserted frequency domain pilots (FPTs). Experimental results show that the proposed scheme can estimate the transceiver IQ skew within 16 ps with an estimation error of less than 0.2 ps and is robust to CD, polarization variation, phase noise, and amplified spontaneous emission noise. To the best of our knowledge, the proposed scheme achieves in-service transceiver IQ skew monitoring for coherent DSCM systems for the first time.

3.
Opt Lett ; 49(11): 3022-3025, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824318

RESUMEN

In this Letter, we present a robust, wide-range, and precise monitoring scheme for transmitter (Tx) impairments in coherent digital subcarrier multiplexing (DSCM) systems. The proposed scheme employs frequency-domain pilot tones (FPTs) to compensate for frequency offset (FO), polarization aliasing, and carrier phase noise, thus isolating Tx impairments from channel distortions. It then implements 4 × 4 real-valued MIMO to compensate for Tx impairments by equalizing symmetric subcarriers. Tx impairment monitoring is derived from the equalizer coefficients. By considering the phase shift caused by Tx impairments, a wide-range and precise monitoring of Tx impairments including IQ skew, IQ phase, and gain imbalances is achieved. We experimentally validated our approach using a 48-GBaud, four-subcarrier, dual-polarization coherent DSCM system. The results confirm the method's capability for a wide-range, robust, and precise Tx impairment monitoring in coherent DSCM systems, maintaining performance even in the presence of ultra-fast polarization variation.

4.
J Loss Prev Process Ind ; 72: 104583, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36568490

RESUMEN

The COVID-19 epidemic has caused a lack of data on highway transportation accidents involving dangerous goods in China in the first quarter of 2020, and this lack of data has seriously affected research on highway transportation accidents involving dangerous goods. This study strives to compensate for this lack to a certain extent and reduce the impact of missing data on research of dangerous goods transportation accidents. Data pertaining to 2340 dangerous goods accidents in the process of highway transportation in China from 2013 to 2019 are obtained with webpage crawling software. In this paper, the number of monthly highway transportation accidents involving dangerous goods from 2013 to 2019 is determined, and the time series of transportation accidents and an autoregressive moving average (ARMA) prediction model are established. The prediction accuracy of the model is evaluated based on the actual number of dangerous goods highway transportation accidents in China from 2017 to 2019. The results indicate that the mean absolute percentage error (MAPE) between the actual and predicted values of dangerous goods highway transportation accidents from 2017 to 2019 is 0.147, 0.315 and 0.29. Therefore, the model meets the prediction accuracy requirements. Then, the prediction model is applied to predict the number of dangerous goods transportation accidents in the first quarter of 2020 in China. Twenty-two accidents are predicted in January, 23 accidents in February and 27 accidents in March. The results provide a reference for the study of dangerous goods transportation accidents and the formulation of accident prevention and emergency measures.

5.
J Phys Condens Matter ; 34(5)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34673561

RESUMEN

In this work, neutron irradiation effects on the optical property of multilayer MoS2have been investigated in depth. Our results display that the intensity of the photoluminescence (PL) spectra of MoS2flakes tends to slightly decrease after exposed to neutron irradiation with low fluence of 4.0 × 108n/cm2. An unexpected improvement of PL intensity, however, is observed when the irradiation fluence accumulates to 3.2 × 109n/cm2. Combined with the experimental results and first-principles calculations, neutron irradiation damage effects of multilayer MoS2are analyzed deeply. Sulfur vacancy (VS) is found to be responsible for the attenuation of the PL intensity as a major defect. In addition, our results reveal that the adsorbed hydroxyl groups (OH) and oxygen atoms (O) on the surface of MoS2flakes not only promote the transition from trion excitons to neutral excitons, but also repair theVSin MoS2, both of which contribute to the enhancement of luminescence properties. The detailed evolution process of irradiation-induced defects is discussed to reveal the microscopic mechanism of the significantly difference in luminescence intensity of MoS2under different irradiation stages. This work has great significance for evaluating the neutron radiation hardness of multilayer MoS2, which is helpful to enrich the fundamental research on neutron irradiation effects.

6.
ACS Appl Mater Interfaces ; 13(48): 57735-57742, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34841872

RESUMEN

Rubrene single crystals have received a lot of attention for their great potential in electronic and wearable nanoelectronics due to their high carrier mobility and excellent flexibility. While they exhibited remarkable electrical performances, their intrinsic potential as photon detectors has not been fully exploited. Here, we fabricate a sensitive and ultrafast organic phototransistor based on rubrene single crystals. The device covers the ultraviolet to visible range (275-532 nm), and the responsivity and detectivity can reach up to ∼4000 A W-1 and 1011 jones at 532 nm, respectively. Furthermore, the response times are highly gate-tunable down to sub-90 µs, and the cutoff frequency is ∼4 kHz, which is one of the fastest organic material-based phototransistors reported so far. Equally important is that the fabricated device exhibits stable light detection ability even after 8 months, indicating great long-term stability and excellent environmental robustness. The results suggest that the high-quality rubrene single crystal may be a promising material for future flexible optoelectronics with its intrinsic mechanical flexibility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA