Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 98(9): e0053524, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39158273

RESUMEN

Coronaviruses (CoVs) are important pathogens for humans and other vertebrates, causing severe respiratory and intestinal infections that have become a threat to public health because of the potential for interspecies transmission between animals and humans. Therefore, the development of safe, effective vaccines remains a top priority for the control of CoV infection. The unique immunological characteristics of vaccines featuring messenger RNA (mRNA) present an advantageous tool for coronavirus vaccine development. Here, we designed two lipid nanoparticle (LNP)-encapsulated mRNA (mRNA-LNP) vaccines: one encoding full-length spike (S) protein and the other encoding the spike ectodomain (Se) from porcine deltacoronavirus (PDCoV). Fourteen days after primary immunization, both mRNA vaccines induced high levels of immunoglobulin G and neutralizing antibodies in mice, with the S vaccine showing better performance than the Se vaccine. Passive immune protection of the S mRNA vaccine in suckling piglets was confirmed by the induction of robust PDCoV-specific humoral and cellular immune responses. The S mRNA vaccine also showed better protective effects than the inactivated vaccine. Our results suggest that the novel PDCoV-S mRNA-LNP vaccine may have the potential to combat PDCoV infection. IMPORTANCE: As an emerging porcine enteropathogenic coronavirus, porcine deltacoronavirus (PDCoV) has the potential for cross-species transmission, attracting extensive attention. Messenger RNA (mRNA) vaccines are a promising option for combating emerging and re-emerging infectious diseases, as evidenced by the demonstrated efficacy of the COVID-19 mRNA vaccine. Here, we first demonstrated that PDCoV-S mRNA-lipid nanoparticle (LNP) vaccines could induce potent humoral and cellular immune responses in mice. An evaluation of passive immune protection of S mRNA vaccines in suckling piglets confirmed that the protective effect of mRNA vaccine was better than that of inactivated vaccine. This study suggests that the PDCoV-S mRNA-LNP vaccine may serve as a potential and novel vaccine candidate for combating PDCoV infection.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Coronavirus , Glicoproteína de la Espiga del Coronavirus , Enfermedades de los Porcinos , Vacunas Virales , Animales , Porcinos , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Ratones , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunas de ARNm , Deltacoronavirus/inmunología , Deltacoronavirus/genética , Nanopartículas , ARN Mensajero/genética , ARN Mensajero/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Ratones Endogámicos BALB C , Femenino , Inmunidad Humoral , Liposomas
2.
J Virol ; 98(8): e0061124, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39078151

RESUMEN

Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, is a serious threat to piglets and has zoonotic potential. Here, we aimed to further explore the role of aminopeptidase N (APN) as a receptor for PDCoV and test the inhibitory effect of a chimeric APN protein strategy on PDCoV infection. PK-15 cells and LLC-PK1 cells expressing chimeric APN were selected and infected with PDCoV. Viral replication was significantly decreased in these chimeric APN cells compared with that in control group cells. To further characterize the effect of the chimeric APN strategy on PDCoV infection in vitro, primary intestinal epithelial cells isolated from chimeric APN pigs were inoculated with PDCoV. Viral challenge of these cells led to decreased PDCoV infection. More importantly, virally challenged chimeric APN neonatal piglets displayed reduced viral load, significantly fewer microscopic lesions in the intestinal tissue, and no diarrhea. Taken together, these findings deepen our understanding of the mechanism of PDCoV infection and provide a valuable model for the production of disease-resistant animals. IMPORTANCE: Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, causes diarrhea in piglets and possesses the potential to infect humans. However, there are currently no effective measures for the prevention or control of PDCoV infection. Here, we have developed PK-15 cells, LLC-PK1 cells, and primary intestinal epithelial cells expressing chimeric APN, and viral challenge of these cells led to decreased PDCoV infection. Furthermore, virally challenged chimeric APN neonatal piglets displayed reduced viral load, significantly fewer microscopic lesions in the intestinal tissue, and no diarrhea. These data show that chimeric APN is a promising strategy to combat PDCoV infection.


Asunto(s)
Animales Recién Nacidos , Antígenos CD13 , Infecciones por Coronavirus , Deltacoronavirus , Enfermedades de los Porcinos , Replicación Viral , Animales , Porcinos , Antígenos CD13/genética , Antígenos CD13/metabolismo , Enfermedades de los Porcinos/virología , Deltacoronavirus/genética , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/prevención & control , Carga Viral , Edición Génica/métodos , Línea Celular , Células Epiteliales/virología , Diarrea/virología
3.
J Transl Med ; 22(1): 579, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890720

RESUMEN

BACKGROUND: This study developed a nomogram model using CT-based delta-radiomics features and clinical factors to predict pathological complete response (pCR) in esophageal squamous cell carcinoma (ESCC) patients receiving neoadjuvant chemoradiotherapy (nCRT). METHODS: The study retrospectively analyzed 232 ESCC patients who underwent pretreatment and post-treatment CT scans. Patients were divided into training (n = 186) and validation (n = 46) sets through fivefold cross-validation. 837 radiomics features were extracted from regions of interest (ROIs) delineations on CT images before and after nCRT to calculate delta values. The LASSO algorithm selected delta-radiomics features (DRF) based on classification performance. Logistic regression constructed a nomogram incorporating DRFs and clinical factors. Receiver operating characteristic (ROC) and area under the curve (AUC) analyses evaluated nomogram performance for predicting pCR. RESULTS: No significant differences existed between the training and validation datasets. The 4-feature delta-radiomics signature (DRS) demonstrated good predictive accuracy for pCR, with α-binormal-based and empirical AUCs of 0.871 and 0.869. T-stage (p = 0.001) and differentiation degree (p = 0.018) were independent predictors of pCR. The nomogram combined the DRS and clinical factors improved the classification performance in the training dataset (AUCαbin = 0.933 and AUCemp = 0.941). The validation set showed similar performance with AUCs of 0.958 and 0.962. CONCLUSIONS: The CT-based delta-radiomics nomogram model with clinical factors provided high predictive accuracy for pCR in ESCC patients after nCRT.


Asunto(s)
Quimioradioterapia , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Terapia Neoadyuvante , Nomogramas , Curva ROC , Tomografía Computarizada por Rayos X , Humanos , Masculino , Femenino , Persona de Mediana Edad , Carcinoma de Células Escamosas de Esófago/terapia , Carcinoma de Células Escamosas de Esófago/diagnóstico por imagen , Carcinoma de Células Escamosas de Esófago/patología , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/diagnóstico por imagen , Resultado del Tratamiento , Anciano , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/diagnóstico por imagen , Reproducibilidad de los Resultados , Adulto , Área Bajo la Curva , Estudios Retrospectivos , Radiómica
4.
Microb Pathog ; 192: 106714, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38801864

RESUMEN

Porcine deltacoronavirus (PDCoV), a novel enteropathogenic coronavirus, causes diarrhea mainly in suckling piglets and has the potential to infect humans. Whereas, there is no commercially available vaccine which can effectively prevent this disease. In this study, to ascertain the duration of immune protection of inactivated PDCoV vaccine, suckling piglets were injected subcutaneously with inactivated PDCoV vaccine using a prime/boost strategy at 3 and 17-day-old. Neutralizing antibody assay showed that the level of the inactivated PDCoV group was still ≥1:64 at three months after prime vaccination. The three-month-old pigs were orally challenged with PDCoV strain CZ2020. Two pigs in challenge control group showed mild to severe diarrhea at 10-11 day-post-challenge (DPC), while the inactivated PDCoV group had no diarrhea. High levels of viral shedding, substantial intestinal villus atrophy, and positive straining of viral antigens in ileum were detected in challenge control group, while the pigs in inactivated PDCoV group exhibited significantly reduced viral load, minor intestinal villi damage and negative straining of viral antigens. These results demonstrated that PDCoV was pathogenic against three-month-old pigs and inactivated PDCoV vaccine can provide effective protection in pigs lasting for three months.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Coronavirus , Diarrea , Enfermedades de los Porcinos , Vacunas de Productos Inactivados , Vacunas Virales , Esparcimiento de Virus , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/administración & dosificación , Porcinos , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/veterinaria , Diarrea/prevención & control , Diarrea/inmunología , Diarrea/virología , Vacunación , Coronavirus/inmunología , Carga Viral , Antígenos Virales/inmunología
5.
J Nanobiotechnology ; 22(1): 471, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118143

RESUMEN

Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease, while there is a lack of pharmaceutical interventions to halt AAA progression presently. To address the multifaceted pathology of AAA, this work develops a novel multifunctional gene delivery system to simultaneously deliver two siRNAs targeting MMP-2 and MMP-9. The system (TPNs-siRNA), formed through the oxidative polymerization and self-assembly of epigallocatechin gallate (EGCG), efficiently encapsulates siRNAs during self-assembly. TPNs-siRNA safeguards siRNAs from biological degradation, facilitates intracellular siRNA transfection, promotes lysosomal escape, and releases siRNAs to silence MMP-2 and MMP-9. Additionally, TPNs, serving as a multi-bioactive material, mitigates oxidative stress and inflammation, fosters M1-to-M2 repolarization of macrophages, and inhibits cell calcification and apoptosis. In experiments with AAA mice, TPNs-siRNA accumulated and persisted in aneurysmal tissue after intravenous delivery, demonstrating that TPNs-siRNA can be significantly distributed in macrophages and VSMCs relevant to AAA pathogenesis. Leveraging the carrier's intrinsic multi-bioactive properties, the targeted siRNA delivery by TPNs exhibits a synergistic effect for enhanced AAA therapy. Furthermore, TPNs-siRNA is gradually metabolized and excreted from the body, resulting in excellent biocompatibility. Consequently, TPNs emerges as a promising multi-bioactive nanotherapy and a targeted delivery nanocarrier for effective AAA therapy.


Asunto(s)
Aneurisma de la Aorta Abdominal , Metaloproteinasa 9 de la Matriz , Ratones Endogámicos C57BL , Nanopartículas , ARN Interferente Pequeño , Aneurisma de la Aorta Abdominal/tratamiento farmacológico , Animales , Ratones , Nanopartículas/química , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Polifenoles/química , Polifenoles/farmacología , Catequina/análogos & derivados , Catequina/química , Catequina/farmacología , Té/química , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Humanos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Técnicas de Transferencia de Gen , Estrés Oxidativo/efectos de los fármacos , Células RAW 264.7 , Apoptosis/efectos de los fármacos
6.
J Transl Med ; 21(1): 649, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735671

RESUMEN

BACKGROUND: Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS) are three nervous system diseases that partially overlap clinically and genetically. However, bulk RNA-sequencing did not accurately detect the core pathogenic molecules in them. The availability of high-quality single cell RNA-sequencing data of post-mortem brain collections permits the generation of a large-scale gene expression in different cells in human brain, focusing on the molecular features and relationships between diseases and genes. We integrated single-nucleus RNA-sequencing (snRNA-seq) datasets of human brains with AD, PD, and MS to identify transcriptomic commonalities and distinctions among them. METHODS: The snRNA-seq datasets were downloaded from Gene Expression Omnibus (GEO) database. The Seurat package was used for snRNA-seq data processing. The uniform manifold approximation and projection (UMAP) were utilized for cluster identification. The FindMarker function in Seurat was used to identify the differently expressed genes. Functional enrichment analysis was carried out using the Gene Set Enrichment Analysis (GSEA) and Gene ontology (GO). The protein-protein interaction (PPI) analysis of differentially expressed genes (DEGs) was analyzed using STRING database ( http://string-db.org ). SCENIC analysis was performed using utilizing pySCENIC (v0.10.0) based on the hg19-tss-centered-10 kb-10species databases. The analysis of potential therapeutic drugs was analyzed on Connectivity Map ( https://clue.io ). RESULTS: The gene regulatory network analysis identified several hub genes regulated in AD, PD, and MS, in which HSPB1 and HSPA1A were key molecules. These upregulated HSP family genes interact with ribosome genes in AD and MS, and with immunomodulatory genes in PD. We further identified several transcriptional regulators (SPI1, CEBPA, TFE3, GRHPR, and TP53) of the hub genes, which has important implications for uncovering the molecular crosstalk among AD, PD, and MS. Arctigenin was identified as a potential therapeutic drug for AD, PD, and MS. CONCLUSIONS: Together, the integrated snRNA-seq data and findings have significant implications for unraveling the shared and unique molecular crosstalk among AD, PD, and MS. HSPB1 and HSPA1A as promising targets involved in the pathological mechanisms of neurodegenerative diseases. Additionally, the identification of arctigenin as a potential therapeutic drug for AD, PD, and MS further highlights its potential in treating these neurological disorders. These discoveries lay the groundwork for future research and interventions to enhance our understanding and treatment of AD, PD, and MS.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Múltiple , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Esclerosis Múltiple/genética , Enfermedad de Alzheimer/genética , ARN
7.
Ann Neurol ; 91(5): 704-715, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35152460

RESUMEN

OBJECTIVE: CGG/GGC repeat expansion in FMR1 and NOTCH2NLC is reportedly associated with movement disorders; therefore, we hypothesized that the CGG repeat expansion in LRP12, NUTM2B-AS1, and GIPC1, which was previously identified in myopathy, might also be associated with movement-disorder phenotypes. Here, we investigated whether CGG repeat expansion in LRP12, NUTM2B-AS1, and GIPC1 presents in a cohort of patients with movement disorders. METHODS: We screened for the CGG repeat expansion in LRP12, NUTM2B-AS1, and GIPC1 in 1,346 movement-disorder patients and 1,451 matched healthy controls. RESULTS: No patients or controls harbored expanded CGG repeats in LRP12 or NUTM2B-AS1, whereas 16 patients harbored >40 CGG repeats in GIPC1, with 11 of these patients harboring >60 CGG repeats. One control individual harbored an expanded GIPC1 allele (83 CGG units), suggesting that approximately 1% of patients affected by movement disorders in our population might harbor GIPC1 CGG repeat expansion, with this likely extremely rare in healthy controls (<0.001). The clinical phenotypes of the GIPC1 CGG repeat-positive patients strongly resembled those in patients displaying NOTCH2NLC GGC repeat-positive movement disorders. Additionally, the GIPC1 CGG repeat-positive patients presented white-matter hyperintensities but without typical NOTCH2NLC-related high-intensity signals in the corticomedullary junction. Furthermore, 44% of the GIPC1 CGG repeat-positive patients showed a cognitive deficit, and skin biopsies in 2 patients revealed deposition of intranuclear inclusions. INTERPRETATION: The CGG repeat expansion in GIPC1 might be associated with movement-disorder phenotypes and lead to diseases related to intranuclear inclusions. ANN NEUROL 2022;91:704-715.


Asunto(s)
Trastornos del Movimiento , Distrofias Musculares , Proteínas Adaptadoras Transductoras de Señales/genética , Estudios de Cohortes , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Humanos , Cuerpos de Inclusión Intranucleares/patología , Trastornos del Movimiento/genética , Distrofias Musculares/genética , Expansión de Repetición de Trinucleótido/genética
8.
Cerebellum ; 22(3): 355-362, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35441258

RESUMEN

Spinocerebellar ataxia type 10 (SCA10) is an autosomal dominant cerebellar ataxia accompanied by extracerebellar signs and other neurological disorders. It is caused by an expansion of the ATTCT pentanucleotide repeat in intron 9 of ATXN10. Cases of SCA10, formerly confined to America, have been reported in Europe and Asia. In the present study, we aim to report an atypical SCA10 family in China and provide a reference for the diagnosis of SCA10 in Asia by comparing their clinical and genetic features with former SCA10 pedigrees. Genomic DNA was extracted from patients and subjected to RP-PCR (repeat-primed PCR), Southern blotting, and haplotype analysis to determine the genetic pathogenesis. Patients with SCA10 in this pedigree demonstrated atypical SCA10 manifestations, including the absence of seizures and ocular abnormalities. Magnetic resonance imaging (MRI) showed cerebellar atrophy in five patients with available data. RP-PCR and Southern blotting revealed abnormal expansion. Analysis of single nucleotide polymorphisms (SNPs) surrounding the SCA10 locus in the proband and other affected family members revealed the "C-expansion-G-G-C" haplotype, consistent with former studies. These findings imply that the SCA10 mutation may have occurred before the Amerindian migration from East Asia to North America. It also suggested that SCA10 should be taken into account during differential diagnosis in patients of Asian ancestry, even if they do not present with typical features such as epilepsy.


Asunto(s)
Pueblos del Este de Asia , Ataxias Espinocerebelosas , Humanos , Expansión de las Repeticiones de ADN , Mutación , Ataxias Espinocerebelosas/genética
9.
Oral Dis ; 29(8): 3503-3513, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36250230

RESUMEN

OBJECTIVE: A lack of relevant research on Lycium barbarum polysaccharide-glycoprotein (LBP) application in oral diseases. Here, we focused on the effect of LBP on osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) and periodontitis bone loss. METHODS: Human periodontal ligament stem cells (hPDLSCs) were isolated and identified by flow cytometry. Alkaline phosphatase (ALP) activity, Alizarin Red staining, and combined qPCR and Western blot analyses were performed to elucidate the effects of LBP on the osteogenic potential of hPDLSCs. In vivo experiments were performed with the treatment of LBP in rat periodontal model. MicroCT scanning and histological analysis were conducted to evaluate osteogenesis in situ. RESULTS: Human periodontal ligament stem cells (hPDLSCs) were successfully isolated and identified with CD90, CD29, and CD45. LBP enhanced hPDLSCs proliferation and migration and promoted RUNX2, ALP, Collagen I, and Osteocalcin expression through activating the ERK1/2 signaling pathway in vitro. The inflammatory factors, including interleukin 6 (IL-6) and interleukin 8 (IL-8) were reduced after LBP treatment. Alveolar bone resorption was significantly decreased in the LBP-treated groups in vivo, and osteoclast was markedly decreased by LBP application. CONCLUSION: LBP promoted hPDLSC osteogenesis by targeting the ERK1/2 signaling pathway and reverse bone loss by reducing inflammation. These findings provided latent hope for LBP application in periodontal therapy.


Asunto(s)
Osteogénesis , Ligamento Periodontal , Humanos , Animales , Ratas , Ligamento Periodontal/metabolismo , Células Madre , Diferenciación Celular , Glicoproteínas/metabolismo , Glicoproteínas/farmacología , Células Cultivadas , Proliferación Celular
10.
Biotechnol Lett ; 45(7): 905-919, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37195490

RESUMEN

PURPOSE: As small bioactive molecules, exosomes can deliver osteogenesis-related miRNAs to target cells and promote osteogenesis. This study aimed to investigate miR-26a as a therapeutic cargo to be loaded into bone marrow stromal cell exosomes through a novel immunomodulatory peptide (DP7-C). METHODS: After transfecting BMSCs with DP7-C as a transfection agent, exosomes were extracted by ultracentrifugation from the culture supernatant of miR-26a-modified BMSCs. We then characterized and identified the engineered exosomes. The effect of the engineered exosomes on osteogenesis was then evaluated in vitro and in vivo, including transwell, wound healing, modified alizarin red staining, western blot, real-time quantitative PCR, and experimental periodontitis assays. Bioinformatics and data analyses were conducted to investigate the role of miR-26a in bone regeneration. RESULTS: The DP7-C/miR-26a complex successfully transfected miR-26a into BMSCs and stimulated them to release more than 300 times the amount of exosomes overexpressing miR-26a compared with the ExoNC group. Furthermore, exosomes loaded with miR-26a could enhance proliferation, migration, and osteogenic differentiation of BMSCs in vitro compared with the ExoNC and blank groups. In vivo, the ExomiR-26a group inhibited the destruction of periodontitis compared with the ExoNC and blank groups, as revealed by HE staining. Micro-CT indicated that treatment of ExomiR-26a increased the percent bone volume and the bone mineral density compared with those of the ExoNC (P < 0.05) and blank groups (P < 0.001). Target gene analysis indicated that the osteogenic effect of miR-26a is related to the mTOR pathway. CONCLUSION: miR-26a can be encapsulated into exosomes through DP7-C. Exosomes loaded with miR-26a can promote osteogenesis and inhibit bone loss in experimental periodontitis and serve as the foundation for a novel treatment strategy.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , MicroARNs , Osteogénesis/genética , Exosomas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Diferenciación Celular
11.
Ann Neurol ; 89(1): 182-187, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33016348

RESUMEN

NOTCH2NLC GGC repeat expansions were recently identified in neuronal intranuclear inclusion disease (NIID); however, it remains unclear whether they occur in other neurodegenerative disorders. This study aimed to investigate the role of intermediate-length NOTCH2NLC GGC repeat expansions in Parkinson disease (PD). We screened for GGC repeat expansions in a cohort of 1,011 PD patients and identified 11 patients with intermediate-length repeat expansions ranging from 41 to 52 repeats, with no repeat expansions in 1,134 controls. Skin biopsy revealed phospho-alpha-synuclein deposition, confirming the PD diagnosis in 2 patients harboring intermediate-length repeat expansions instead of NIID or essential tremor. Fibroblasts from PD patients harboring intermediate-length repeat expansions revealed NOTCH2NLC upregulation and autophagic dysfunction. Our results suggest that intermediate-length repeat expansions in NOTCH2NLC are potentially associated with PD. ANN NEUROL 2021;89:182-187.


Asunto(s)
Enfermedades Neurodegenerativas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Adulto , Anciano , Biopsia , Encéfalo/patología , Estudios de Cohortes , Femenino , Humanos , Cuerpos de Inclusión Intranucleares/metabolismo , Cuerpos de Inclusión Intranucleares/patología , Masculino , Persona de Mediana Edad , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/metabolismo , Linaje , Receptor Notch2/metabolismo
12.
Mol Cancer ; 19(1): 113, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32615993

RESUMEN

An amendment to this paper has been published and can be accessed via the original article.

13.
Mol Cancer ; 18(1): 16, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30674324

RESUMEN

Esophageal squamous cell cancer (ESCC) is a high incidence and mortality disease worldwide. However, specificity and sensitivity of its diagnostic and prognostic biomarkers are still unsatisfactory. Recently, circular RNAs (circRNAs) as biomarkers have been studied extensively while the expression profile and clinical significance of circRNAs in ESCC have rarely been studied. We performed circular RNA microarray in 3 pairs of ESCC frozen tumor and non-tumor tissues to identify ESCC-related circRNAs and found 1045 up-regulated and 1032 down-regulated circRNAs among which 6 circRNAs (hsa_circ_0062459, hsa_circ_0076535, hsa_circ_0072215, hsa_circ_0042261, hsa_circ_0001946, and hsa_circ_0043603) displayed consistency with microarray results by qRT-PCR. 3 circRNAs (hsa_circ_0062459, hsa_circ_0001946, and hsa_circ_0043603) were also detected in plasma and 2 of them except hsa_circ_0062459 could be used as diagnostic biomarkers and found in exosome of cell-conditioned culture conditioned media. The AUC, sensitivity and specificity of hsa_circ_0001946 were 0.894, 92, 80%, of hsa_circ_0043603 were 0.836, 64, 92% while a signature combining them were 0.928, 84 and 98%. Hsa_circ_0001946 was confirmed to predict the recurrence, overall survival (OS) and disease-free survival (DFS) in frozen and FFPE tissues, while its overexpression decreased cell proliferation, migration, and invasion.


Asunto(s)
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , ARN/genética , Biomarcadores de Tumor/genética , Proliferación Celular/genética , Supervivencia sin Enfermedad , Regulación hacia Abajo/genética , Exosomas/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Pronóstico , ARN Circular , Sensibilidad y Especificidad , Regulación hacia Arriba/genética
14.
Mol Cancer ; 18(1): 121, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31383028

RESUMEN

After publication of the article [1], the author reported that this article contained error. In Funding section, the funding number provided 2016YFC0105100 should have been 2016YFC0105106.

15.
Int Immunopharmacol ; 141: 112909, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39154531

RESUMEN

The prognosis for esophageal squamous cell carcinoma (ESCC), a prevalent and aggressive form of cancer, remains poor despite advancements in treatment options. Addressing the gap in comprehensive prognostic information derived from circRNA expression profiles for ESCC, our study aimed to establish a linkage between circRNA expressions and ESCC prognosis. To achieve this, we first developed an optimized prognostic model named T cell-related risk score (TRRS), which integrates T cell-associated features with machine learning algorithms. In parallel, we re-analyzed existing RNA-seq datasets to redefine the expression profiles of circRNAs and mRNAs. Utilizing the TRRS as a foundational "bridge," we identified circRNAs correlated with TRRS, leading to the development of a novel circRNA pair-based prognostic model, the TCRS, which is independent of specific expression levels. Further investigations uncovered two circRNAs, circNLK(5,6,7).1 and circRC3H1(2).1, with potential functional significance. These findings underscore the utility of these risk scores as tools for predicting overall survival and identifying potential therapeutic targets for ESCC patients.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , ARN Circular , Humanos , ARN Circular/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/mortalidad , Neoplasias Esofágicas/inmunología , Neoplasias Esofágicas/diagnóstico , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/mortalidad , Carcinoma de Células Escamosas de Esófago/inmunología , Pronóstico , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Linfocitos T/inmunología , Masculino , Femenino , Aprendizaje Automático , Persona de Mediana Edad
16.
Front Oncol ; 14: 1383323, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119093

RESUMEN

Purpose: A systematic review and meta-analysis were conducted to evaluate the diagnostic precision of radiomics in the differential diagnosis of parotid tumors, considering the increasing utilization of radiomics in tumor diagnosis. Although some researchers have attempted to apply radiomics in this context, there is ongoing debate regarding its accuracy. Methods: Databases of PubMed, Cochrane, EMBASE, and Web of Science up to May 29, 2024 were systematically searched. The quality of included primary studies was assessed using the Radiomics Quality Score (RQS) checklist. The meta-analysis was performed utilizing a bivariate mixed-effects model. Results: A total of 39 primary studies were incorporated. The machine learning model relying on MRI radiomics for diagnosis malignant tumors of the parotid gland, demonstrated a sensitivity of 0.80 [95% CI: 0.74, 0.86], SROC of 0.89 [95% CI: 0.27-0.99] in the validation set. The machine learning model based on MRI radiomics for diagnosis malignant tumors of the parotid gland, exhibited a sensitivity of 0.83[95% CI: 0.76, 0.88], SROC of 0.89 [95% CI: 0.17-1.00] in the validation set. The models also demonstrated high predictive accuracy for benign lesions. Conclusion: There is great potential for radiomics-based models to improve the accuracy of diagnosing benign and malignant tumors of the parotid gland. To further enhance this potential, future studies should consider implementing standardized radiomics-based features, adopting more robust feature selection methods, and utilizing advanced model development tools. These measures can significantly improve the diagnostic accuracy of artificial intelligence algorithms in distinguishing between benign and malignant tumors of the parotid gland. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023434931.

17.
Virology ; 597: 110150, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38917690

RESUMEN

Coronaviruses (CoVs) comprise a group of important human and animal pathogens that threaten public health because of their interspecies transmission potential to humans. However, virus-like particles (VLPs) constitute versatile tools in CoVs vaccine development due to their favorable immunological characteristics. Here, we engineered the VLPs composed of the spike (S), membrane (M), and envelope (E) structural proteins of the Porcine deltacoronavirus (PDCoV) and examined their immune responses in mice. Neutralization assays and flow Cytometry demonstrated that PDCoV VLPs induced highly robust neutralizing antibodies (NAbs) and elicited cellular immunity. To assess the protective efficacy of VLPs in newborn piglets, pregnant sows received vaccinations with either a PDCoV-inactivated vaccine or VLPs at 40 and 20 days before delivery. Five days post-farrowing, piglets were orally challenged with the PDCoV strain. Severe diarrhea, high viral RNA copies, and substantial intestinal villus atrophy were detected in piglets born to unimmunized sows. However, piglets from sows immunized with VLPs exhibited high NAbs titers and markedly reduced microscopic damage to the intestinal tissues, with no piglet showing diarrhea. Hence, the results indicate that the VLPs are a potential clinical candidate for PDCoV vaccination, while the strategy may serve as a platform for developing other coronavirus vaccines.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Infecciones por Coronavirus , Deltacoronavirus , Enfermedades de los Porcinos , Vacunas de Partículas Similares a Virus , Vacunas Virales , Animales , Porcinos , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Vacunas Virales/inmunología , Vacunas Virales/administración & dosificación , Femenino , Deltacoronavirus/inmunología , Ratones , Embarazo , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Animales Recién Nacidos
18.
Vet Microbiol ; 293: 110070, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593624

RESUMEN

Stress granules (SGs), the main component is GTPase-activating protein-binding protein 1 (G3BP1), which are assembled during viral infection and function to sequester host and viral mRNAs and proteins, are part of the antiviral responses. In this study, we found that porcine deltacoronavirus (PDCoV) infection induced stable formation of robust SGs in cells through a PERK (protein kinase R-like endoplasmic reticulum kinase)-dependent mechanism. Overexpression of SGs marker proteins G3BP1 significantly reduced PDCoV replication in vitro, while inhibition of endogenous G3BP1 enhanced PDCoV replication. Moreover, PDCoV infected LLC-PK1 cells raise the phosphorylation level of G3BP1. By overexpression of the G3BP1 phosphorylated protein or the G3BP1 dephosphorylated protein, we found that phosphorylation of G3BP1 is involved in the regulation of PDCoV-induced inflammatory response. Taken together, our study presents a vital aspect of the host innate response to invading pathogens and reveals attractive host targets for antiviral target.


Asunto(s)
ADN Helicasas , Inflamación , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Animales , Porcinos , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN Helicasas/metabolismo , ARN Helicasas/genética , ADN Helicasas/metabolismo , ADN Helicasas/genética , Replicación Viral , Coronavirus/inmunología , Coronavirus/fisiología , Línea Celular , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/genética , Inmunidad Innata
19.
Vet Microbiol ; 295: 110137, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851153

RESUMEN

Porcine deltacoronavirus (PDCoV) is an emergent enteric coronavirus, primarily inducing diarrhea in swine, particularly in nursing piglets, with the additional potential for zoonotic transmission to humans. Despite the significant impact of PDCoV on swine populations, its pathogenic mechanisms remain incompletely understood. Complement component 3 (C3) plays a pivotal role in the prevention of viral infections, however, there are no reports concerning the influence of C3 on the proliferation of PDCoV. In this study, we initially demonstrated that PDCoV is capable of activating the C3 and eliciting inflammatory responses. The overexpression of C3 significantly suppressed PDCoV replication, while inhibition of C3 expression facilitated PDCoV replication. We discovered that nonstructural proteins Nsp7, Nsp14, and M, considerably stimulated C3 expression, particularly Nsp14, through activation of the p38-MAPK-C/EBP-ß pathway. The N7-MTase constitutes a significant functional domain of the non-structural protein Nsp14, which is more obvious to upregulate C3. Furthermore, functional mutants of the N7-MTase domain suggested that the D44 and T135 of N7-Mtase constituted a pivotal amino acid site to promote C3 expression. This provides fresh insights into comprehending how the virus manipulates the host immune response and suggests potential antiviral strategies against PDCoV.


Asunto(s)
Complemento C3 , Deltacoronavirus , Proteínas no Estructurales Virales , Replicación Viral , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Complemento C3/genética , Complemento C3/metabolismo , Complemento C3/inmunología , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Porcinos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Deltacoronavirus/genética , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/genética , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/inmunología , Sistema de Señalización de MAP Quinasas , Humanos , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/genética
20.
Quant Imaging Med Surg ; 14(8): 5591-5601, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39144031

RESUMEN

Background: Dynamic chest radiography (DCR) is a novel and supplementary examination in respiratory diseases. The investigation of other chest diseases using DCR has been explored, identifying a certain correlation of the pulmonary function test (PFT). However, there is a lack of research using DCR parameters to quantitatively evaluate chest disease. The purpose of this study was to investigate the diagnostic value of DCR for diaphragm paralysis (DP). Methods: This retrospective study recruited 118 participants, which include 18 patients with DP, 48 healthy volunteers, and 52 patients with respiratory disease. Comparison of DCR parameters relationships among 3 groups was performed using one-way analysis of variance (ANOVA) and Kruskal-Wallis test. The receiver operating characteristic (ROC) curve was used to compare the value of the DCR parameters to diagnose DP. Results: The differences of excursion of diaphragm (ED) in normal (nb) and forced breathing (fb), ED(fb)-ED(nb), and the parameters of projected lung area (PLA) in inspiratory (ins) and expiratory phase (exp), PLA.exp(fb), PLA.ins(fb)-PLA.ins(nb), and PLA.exp(fb)-PLA.exp(nb) among the 3 groups were statistically significant. The highest area under the curve (AUC) of right-side parameter was the ED(fb)-ED(nb), for which the AUC was 0.8950 [95% confidence interval (CI): 0.7618-1.000], whereas that of the left-side parameter was ED(fb), for which the AUC was 0.9176 [95% confidence interval (CI): 0.8524-0.9829]. Conclusions: The parameters of DCR have good diagnostic value for DP. The highest diagnostic efficiency for DP on the right side is the ED(fb)-ED(nb), with a sensitivity of 95% and a specificity of 78.6%, whereas on the left side is ED(fb), with a sensitivity of 80% and a specificity of 88.2%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA