Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cell ; 155(3): 594-605, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24243017

RESUMEN

Nuclear export of unspliced and singly spliced viral mRNA is a critical step in the HIV life cycle. The structural basis by which the virus selects its own mRNA among more abundant host cellular RNAs for export has been a mystery for more than 25 years. Here, we describe an unusual topological structure that the virus uses to recognize its own mRNA. The viral Rev response element (RRE) adopts an "A"-like structure in which the two legs constitute two tracks of binding sites for the viral Rev protein and position the two primary known Rev-binding sites ~55 Å apart, matching the distance between the two RNA-binding motifs in the Rev dimer. Both the legs of the "A" and the separation between them are required for optimal RRE function. This structure accounts for the specificity of Rev for the RRE and thus the specific recognition of the viral RNA.


Asunto(s)
Transporte Activo de Núcleo Celular , VIH-1/química , ARN Mensajero/química , ARN Viral/química , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/química , Secuencia de Bases , Sitios de Unión , Núcleo Celular/metabolismo , Células HEK293 , VIH-1/genética , Humanos , Datos de Secuencia Molecular , Poro Nuclear/metabolismo , Conformación de Ácido Nucleico , Pliegue del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/metabolismo
2.
EMBO J ; 40(14): e107500, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34046916

RESUMEN

The Staphylococcal Bap proteins sense environmental signals (such as pH, [Ca2+ ]) to build amyloid scaffold biofilm matrices via unknown mechanisms. We here report the crystal structure of the aggregation-prone region of Staphylococcus aureus Bap which adopts a dumbbell-shaped fold. The middle module (MM) connecting the N-terminal and C-terminal lobes consists of a tandem of novel double-Ca2+ -binding motifs involved in cooperative interaction networks, which undergoes Ca2+ -dependent order-disorder conformational switches. The N-terminal lobe is sufficient to mediate amyloid aggregation through liquid-liquid phase separation and maturation, and subsequent biofilm formation under acidic conditions. Such processes are promoted by disordered MM at low [Ca2+ ] but inhibited by ordered MM stabilized by Ca2+ binding, with inhibition efficiency depending on structural integrity of the interaction networks. These studies illustrate a novel protein switch in pathogenic bacteria and provide insights into the mechanistic understanding of Bap proteins in modulation of functional amyloid and biofilm formation, which could be implemented in the anti-biofilm drug design.


Asunto(s)
Amiloide/metabolismo , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/metabolismo , Calcio/metabolismo , Agregación Celular/fisiología
3.
Nucleic Acids Res ; 51(2): 952-965, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36620887

RESUMEN

In bacteria, expression of folate-related genes is controlled by the tetrahydrofolate (THF) riboswitch in response to specific binding of THF and its derivatives. Recently, a second class of THF riboswitches, named THF-II, was identified in Gram-negative bacteria, which exhibit distinct architecture from the previously characterized THF-I riboswitches found in Gram-positive bacteria. Here, we present the crystal structures of the ligand-bound THF-II riboswitch from Mesorhizobium loti. These structures exhibit a long rod-like fold stabilized by continuous base pair and base triplet stacking across two helices of P1 and P2 and their interconnecting ligand-bound binding pocket. The pterin moiety of the ligand docks into the binding pocket by forming hydrogen bonds with two highly conserved pyrimidines in J12 and J21, which resembles the hydrogen-bonding pattern at the ligand-binding site FAPK in the THF-I riboswitch. Using small-angle X-ray scattering and isothermal titration calorimetry, we further characterized the riboswitch in solution and reveal that Mg2+ is essential for pre-organization of the binding pocket for efficient ligand binding. RNase H cleavage assay indicates that ligand binding reduces accessibility of the ribosome binding site in the right arm of P1, thus down-regulating the expression of downstream genes. Together, these results provide mechanistic insights into translation regulation by the THF-II riboswitch.


Asunto(s)
Bacterias , Riboswitch , Emparejamiento Base , Ligandos , Conformación de Ácido Nucleico , Tetrahidrofolatos/metabolismo , Bacterias/genética
4.
Nature ; 557(7707): 674-678, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29795342

RESUMEN

Protein ubiquitination is a multifaceted post-translational modification that controls almost every process in eukaryotic cells. Recently, the Legionella effector SdeA was reported to mediate a unique phosphoribosyl-linked ubiquitination through successive modifications of the Arg42 of ubiquitin (Ub) by its mono-ADP-ribosyltransferase (mART) and phosphodiesterase (PDE) domains. However, the mechanisms of SdeA-mediated Ub modification and phosphoribosyl-linked ubiquitination remain unknown. Here we report the structures of SdeA in its ligand-free, Ub-bound and Ub-NADH-bound states. The structures reveal that the mART and PDE domains of SdeA form a catalytic domain over its C-terminal region. Upon Ub binding, the canonical ADP-ribosyltransferase toxin turn-turn (ARTT) and phosphate-nicotinamide (PN) loops in the mART domain of SdeA undergo marked conformational changes. The Ub Arg72 might act as a 'probe' that interacts with the mART domain first, and then movements may occur in the side chains of Arg72 and Arg42 during the ADP-ribosylation of Ub. Our study reveals the mechanism of SdeA-mediated Ub modification and provides a framework for further investigations into the phosphoribosyl-linked ubiquitination process.


Asunto(s)
Legionella pneumophila/enzimología , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Ubiquitina/metabolismo , Ubiquitinación , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/metabolismo , Arginina/metabolismo , Proteínas Bacterianas , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Chaperonas Moleculares/metabolismo , NAD/metabolismo , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Procesamiento Proteico-Postraduccional , Especificidad por Sustrato , Ubiquitina/química
5.
Proc Natl Acad Sci U S A ; 117(37): 22823-22832, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32868439

RESUMEN

Conjugation of RNAs with nanoparticles (NPs) is of significant importance because of numerous applications in biology and medicine, which, however, remains challenging especially for large ones. So far, the majority of RNA labeling relies on solid-phase chemical synthesis, which is generally limited to RNAs smaller than 100 nucleotides (nts). We, here, present an efficient and generally applicable labeling strategy for site-specific covalent conjugation of large RNAs with a gold nanoparticle (Nanogold) empowered by transcription of an expanded genetic alphabet containing the A-T/U and G-C natural base pairs (bps) and the TPT3-NaM unnatural base pair (UBP). We synthesize an amine-derivatized TPT3 (TPT3A), which is site specifically incorporated into a 97-nt 3'SL RNA and a 719-nt minigenomic RNA (DENV-mini) from Dengue virus serotype 2 (DENV2) by in vitro T7 transcription. The TPT3A-modified RNAs are covalently conjugated with mono-Sulfo-N-hydroxysuccinimidyl (NHS)-Nanogold NPs via an amine and NHS ester reaction and further purified under nondenaturing conditions. TPT3 modification and Nanogold labeling cause minimal structural perturbations to the RNAs by circular dichroism, small angle X-ray scattering (SAXS), and binding activity assay. We demonstrate the application of the Nanogold-RNA conjugates in large RNA structural biology by an emerging molecular ruler, X-ray scattering interferometry (XSI). The internanoparticle distance distributions in the 3'SL and DENV-mini RNAs derived from XSI measurements support the hypothetical model of flavivirus genome circularization, thus, validate the applicability of this labeling strategy. The presented strategy overcomes the size constraints in conventional RNA labeling strategies and is expected to have wide applications in large RNA structural biology and RNA nanotechnology.


Asunto(s)
Virus del Dengue/genética , Oro/química , Nanopartículas del Metal/química , ARN Viral/química , ARN Viral/genética , Virus del Dengue/química , Dispersión del Ángulo Pequeño , Transcripción Genética
6.
Proc Natl Acad Sci U S A ; 117(2): 1027-1035, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31888991

RESUMEN

Epithelial cell transforming 2 (Ect2) protein activates Rho GTPases and controls cytokinesis and many other cellular processes. Dysregulation of Ect2 is associated with various cancers. Here, we report the crystal structure of human Ect2 and complementary mechanistic analyses. The data show the C-terminal PH domain of Ect2 folds back and blocks the canonical RhoA-binding site at the catalytic center of the DH domain, providing a mechanism of Ect2 autoinhibition. Ect2 is activated by binding of GTP-bound RhoA to the PH domain, which suggests an allosteric mechanism of Ect2 activation and a positive-feedback loop reinforcing RhoA signaling. This bimodal RhoA binding of Ect2 is unusual and was confirmed with Förster resonance energy transfer (FRET) and hydrogen-deuterium exchange mass spectrometry (HDX-MS) analyses. Several recurrent cancer-associated mutations map to the catalytic and regulatory interfaces, and dysregulate Ect2 in vitro and in vivo. Together, our findings provide mechanistic insights into Ect2 regulation in normal cells and under disease conditions.


Asunto(s)
Células Epiteliales/metabolismo , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Sitios de Unión , Citocinesis/fisiología , Transferencia Resonante de Energía de Fluorescencia , Técnicas de Silenciamiento del Gen , Humanos , Mutación , Neoplasias/genética , Neoplasias/metabolismo , Conformación Proteica , Dominios Proteicos , Proteínas Proto-Oncogénicas/genética , Transducción de Señal , Proteína de Unión al GTP rhoA/química , Proteína de Unión al GTP rhoA/metabolismo
7.
Biophys J ; 121(1): 37-43, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34896070

RESUMEN

Pulsed electron-electron double resonance (PELDOR or DEER) spectroscopy is powerful in structure and dynamics study of biological macromolecules by providing distance distribution information ranging from 1.8 to 6 nm, providing that the biomolecules are site-specifically labeled with paramagnetic tags. However, long distances up to 16 nm have been measured on perdeuterated and spin-labeled proteins in deuterated solvent by PELDOR. Here we demonstrate long-range distance measurement on a large RNA, the 97-nucleotide 3'SL RNA element of the Dengue virus 2 genome, by combining a posttranscriptional site-directed spin labeling method using an unnatural basepair system with RNA perdeuteration by enzymatic synthesis using deuterated nucleotides. The perdeuteration removes the coupling of the electron spins of the nitroxide spin labels from the proton nuclear spin system of the RNA and does extend the observation time windows of PELDOR up to 50 µs. This enables one to determine long distances up to 14 nm for large RNAs and their conformational flexibility.


Asunto(s)
Proteínas , ARN , Espectroscopía de Resonancia por Spin del Electrón/métodos , Conformación Molecular , Proteínas/química , ARN/química , Marcadores de Spin
8.
J Biol Chem ; 296: 100538, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33722610

RESUMEN

The protein tyrosine phosphatase SHP2 mediates multiple signal transductions in various cellular pathways, controlled by a variety of upstream inputs. SHP2 dysregulation is causative of different types of cancers and developmental disorders, making it a promising drug target. However, how SHP2 is modulated by its different regulators remains largely unknown. Here, we use single-molecule fluorescence resonance energy transfer and molecular dynamics simulations to investigate this question. We identify a partially open, semiactive conformation of SHP2 that is intermediate between the known open and closed states. We further demonstrate a "multiple gear" regulatory mechanism, in which different activators (e.g., insulin receptor substrate-1 and CagA), oncogenic mutations (e.g., E76A), and allosteric inhibitors (e.g., SHP099) can shift the equilibrium of the three conformational states and regulate SHP2 activity to different levels. Our work reveals the essential role of the intermediate state in fine-tuning the activity of SHP2, which may provide new opportunities for drug development for relevant cancers.


Asunto(s)
Calgranulina A/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Piperidinas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Pirimidinas/metabolismo , Regulación Alostérica , Humanos , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Conformación Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética
9.
J Cell Sci ; 133(9)2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32152183

RESUMEN

In cells, microtubule dynamics are regulated by plus-end tracking proteins (+TIPs). End-binding protein 1 (EB1, also known as MAPRE1) acts as a master regulator of +TIP networks by targeting the growing ends of microtubules and recruiting other factors. However, the molecular mechanism underlying high-affinity binding of EB1 to microtubule ends remains an open area of research. Using single-molecule imaging, we show that the end-binding kinetics of EB1 change when the polymerization and hydrolysis rates of tubulin dimers are altered, confirming that EB1 binds to GTP-tubulin and/or GDP-Pi-tubulin at microtubule growing ends. The affinity of wild-type EB1 to these sites is higher than that of monomeric EB1 mutants, suggesting that both calponin homology domains present in the EB1 dimer contribute to end binding. Introduction of phosphomimetic mutations into the EB1 linker domain weakens the end-binding affinity and confers a more curved conformation on the EB1 dimer without compromising dimerization, suggesting that the overall architecture of EB1 is important for its end-binding affinity. Taken together, our results provide insights into how the high-affinity end-binding of EB1 is achieved and how this activity may be regulated in cells.


Asunto(s)
Proteínas Asociadas a Microtúbulos , Microtúbulos , Cinética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fosforilación , Unión Proteica , Tubulina (Proteína)/metabolismo
10.
J Virol ; 94(6)2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31896596

RESUMEN

Mosquito-borne flaviviruses consist of a positive-sense genome RNA flanked by the untranslated regions (UTRs). There is a panel of highly complex RNA structures in the UTRs with critical functions. For instance, Xrn1-resistant RNAs (xrRNAs) halt Xrn1 digestion, leading to the production of subgenomic flaviviral RNA (sfRNA). Conserved short direct repeats (DRs), also known as conserved sequences (CS) and repeated conserved sequences (RCS), have been identified as being among the RNA elements locating downstream of xrRNAs, but their biological function remains unknown. In this study, we revealed that the specific DRs are involved in the production of specific sfRNAs in both mammalian and mosquito cells. Biochemical assays and structural remodeling demonstrate that the base pairings in the stem of these DRs control sfRNA formation by maintaining the binding affinity of the corresponding xrRNAs to Xrn1. On the basis of these findings, we propose that DRs functions like a bracket holding the Xrn1-xrRNA complex for sfRNA formation.IMPORTANCE Flaviviruses include many important human pathogens. The production of subgenomic flaviviral RNAs (sfRNAs) is important for viral pathogenicity as a common feature of flaviviruses. sfRNAs are formed through the incomplete degradation of viral genomic RNA by the cytoplasmic 5'-3' exoribonuclease Xrn1 halted at the Xrn1-resistant RNA (xrRNA) structures within the 3'-UTR. The 3'-UTRs of the flavivirus genome also contain distinct short direct repeats (DRs), such as RCS3, CS3, RCS2, and CS2. However, the biological functions of these ancient primary DR sequences remain largely unknown. Here, we found that DR sequences are involved in sfRNA formation and viral virulence and provide novel targets for the rational design of live attenuated flavivirus vaccine.


Asunto(s)
Regiones no Traducidas 3'/fisiología , Flavivirus/metabolismo , Genoma Viral/fisiología , Conformación de Ácido Nucleico , ARN Viral/biosíntesis , Secuencias Repetidas en Tándem/fisiología , Células A549 , Animales , Chlorocebus aethiops , Cricetinae , Culicidae/metabolismo , Culicidae/virología , Flavivirus/genética , Humanos , ARN Viral/genética , Células Vero
11.
EMBO Rep ; 20(11): e47016, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31502753

RESUMEN

Most mosquito-borne flaviviruses, including Zika virus (ZIKV), Dengue virus (DENV), and West Nile virus (WNV), produce long non-coding subgenomic RNAs (sfRNAs) in infected cells that link to pathogenicity and immune evasion. Until now, the structural characterization of these lncRNAs remains limited. Here, we studied the 3D structures of individual and combined subdomains of sfRNAs, and visualized the accessible 3D conformational spaces of complete sfRNAs from DENV2, ZIKV, and WNV by small angle X-ray scattering (SAXS) and computational modeling. The individual xrRNA1s and xrRNA2s adopt similar structures in solution as the crystal structure of ZIKV xrRNA1, and all xrRNA1-2s form compact structures with reduced flexibility. While the DB12 of DENV2 is extended, the DB12s of ZIKV and WNV are compact due to the formation of intertwined double pseudoknots. All 3' stem-loops (3'SLs) share similar rod-like structures. Complete sfRNAs are extended and sample a large conformational space in solution. Our work not only provides structural insight into the function of flavivirus sfRNAs, but also highlights strategies of visualizing other lncRNAs in solution by SAXS and computational methods.


Asunto(s)
Flavivirus/genética , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Largo no Codificante/química , ARN Viral/química , Animales , Secuencia de Bases , Genoma Viral , Humanos , Soluciones , Virus del Nilo Occidental/genética , Difracción de Rayos X , Virus Zika/genética
12.
Nucleic Acids Res ; 47(17): 9433-9447, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31400120

RESUMEN

Histone H3K4 methylation is an epigenetic mark associated with actively transcribed genes. This modification is catalyzed by the mixed lineage leukaemia (MLL) family of histone methyltransferases including MLL1, MLL2, MLL3, MLL4, SET1A and SET1B. The catalytic activity of this family is dependent on interactions with additional conserved proteins, but the structural basis for subunit assembly and the mechanism of regulation is not well understood. We used a hybrid methods approach to study the assembly and biochemical function of the minimally active MLL1 complex (MLL1, WDR5 and RbBP5). A combination of small angle X-ray scattering, cross-linking mass spectrometry, nuclear magnetic resonance spectroscopy and computational modeling were used to generate a dynamic ensemble model in which subunits are assembled via multiple weak interaction sites. We identified a new interaction site between the MLL1 SET domain and the WD40 ß-propeller domain of RbBP5, and demonstrate the susceptibility of the catalytic function of the complex to disruption of individual interaction sites.


Asunto(s)
Proteínas de Unión al ADN/química , N-Metiltransferasa de Histona-Lisina/química , Histonas/química , Proteína de la Leucemia Mieloide-Linfoide/química , Catálisis , Proteínas de Unión al ADN/genética , Epigénesis Genética/genética , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lisina/genética , Metilación , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Dominios PR-SET/genética , Conformación Proteica , Mapas de Interacción de Proteínas/genética , Repeticiones WD40/genética
13.
J Biol Chem ; 293(37): 14296-14311, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30049797

RESUMEN

Biofilms are communities of microbes embedded in a microbial extracellular matrix. Their formation is considered the main virulence mechanism enabling the opportunistic bacterial pathogen Staphylococcus epidermidis to cause devastating nosocomial, implant-associated infections. Biofilms often contain proteins, and an 18-kDa protein called small basic protein (Sbp) recently was discovered in the S. epidermidis biofilm matrix and may serve as a scaffolding protein in both polysaccharide intercellular adhesin (PIA)-dependent and accumulation-associated protein (Aap)-dependent biofilm formations. In Aap-mediated biofilm formation, Sbp colocalizes with Domain-B of Aap, implying that Sbp directly interacts with Aap's Domain-B. However, the structure of Sbp and its interaction with Aap, as well as the molecular mechanism underlying Sbp's roles in biofilm formation, are incompletely understood. In this work, we used small-angle X-ray scattering (SAXS), NMR, analytical size-exclusion chromatography, and isothermal titration calorimetry analyses to determine the Sbp structure and characterize its interaction with Aap's Domain-B. We found that Sbp is monomeric and partially folded in solution, and, unexpectedly, we observed no direct interactions between Sbp and Aap Domain-B. Instead, we noted that Sbp forms amyloid fibrils both in vitro and in vivo Atomic force, transmission electron, and confocal fluorescence microscopy methods confirmed the formation of Sbp amyloid fibrils and revealed their morphology. Taken together, the Sbp amyloid fibril structures identified here may account for Sbp's role as a scaffolding protein in the S. epidermidis biofilm matrix.


Asunto(s)
Amiloide/metabolismo , Proteínas Bacterianas/metabolismo , Biopelículas , Staphylococcus epidermidis/metabolismo , Proteínas Bacterianas/química , Fenómenos Biofísicos , Calorimetría , Cromatografía en Gel , Escherichia coli/metabolismo , Cinética , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Pliegue de Proteína , Dispersión del Ángulo Pequeño , Soluciones , Difracción de Rayos X
14.
Proteins ; 87(4): 257-264, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30561148

RESUMEN

MoSub1 is an ortholog of yeast single stranded DNA binding protein Sub1 or human PC4 from rice blast fungus. All of them share a similar DNA binding region and may have similar biological roles. The well-studied Sub1/PC4 has been reported to play multiple roles in DNA metabolic processes, such as transcription and DNA repair and their DNA binding capacity is significantly affected by phosphorylation. Here, we determined the crystal structure of MoSub1 complexed with ssDNA in a phosphate solution. The crystal structure of the MoSub1-ssDNA complex was solved to a resolution of 2.04 Å. A phosphate ion at the interface of the protein-DNA interaction of the complex bridged the lys84 of the protein and two nucleotides. The DNA was bound in novel mode (L mode) in the MoSub1 complex in the presence of phosphate ions, while DNA bound in the straight mode in the absence of the phosphate ion and in U mode in the same binding motif of the PC4-ssDNA complex. The crystal structure of the complex and a small-angle X-ray scattering analysis revealed that the phosphate ion at the protein-DNA interface affected the DNA binding mode of MoSub1 to oligo-DNA and provided a new structural clue for studying its functions.


Asunto(s)
ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Magnaporthe/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Tampones (Química) , Cristalografía por Rayos X , ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , Proteínas Fúngicas/química , Magnaporthe/química , Modelos Moleculares , Fosfatos/química , Fosfatos/metabolismo , Unión Proteica , Conformación Proteica
15.
Biochemistry ; 56(28): 3549-3558, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28621923

RESUMEN

In Gram-positive bacteria, the tRNA-dependent T-box riboswitch system regulates expression of amino acid biosynthetic and aminoacyl-tRNA synthetase genes through a transcription attenuation mechanism. Binding of uncharged tRNA "closes" the switch, allowing transcription read-through. Structural studies of the 100-nucleotide stem I domain reveal tRNA utilizes base pairing and stacking interactions to bind the stem, but little is known structurally about the 180-nucleotide riboswitch core (stem I, stem III, and antiterminator stem) in complex with tRNA or the mechanism of coupling of the intermolecular binding domains crucial to T-box function. Here we utilize solution structural and biophysical methods to characterize the interplay of the different riboswitch-tRNA contact points using Bacillus subtilis and Oceanobacillus iheyensis glycyl T-box and T-box:tRNA constructs. The data reveal that tRNA:riboswitch core binding at equilibrium involves only Specifier-anticodon and antiterminator-acceptor stem pairing. The elbow:platform stacking interaction observed in studies of the T-box stem I domain is released after pairing between the acceptor stem and the bulge in the antiterminator helix. The results are consistent with the model of T-box riboswitch:tRNA function in which tRNA is captured by stem I of the nascent mRNA followed by stabilization of the antiterminator helix and the paused transcription complex.


Asunto(s)
Bacillaceae/metabolismo , ARN Bacteriano/metabolismo , ARN de Transferencia/metabolismo , Riboswitch , Bacillaceae/química , Bacillus subtilis/química , Bacillus subtilis/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Bacteriano/química , ARN de Transferencia/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
16.
Proc Natl Acad Sci U S A ; 111(48): 17134-9, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25404287

RESUMEN

The Sm-like protein Hfq (host factor Q-beta phage) facilitates regulation by bacterial small noncoding RNAs (sRNAs) in response to stress and other environmental signals. Here, we present a low-resolution model of Escherichia coli Hfq bound to the rpoS mRNA, a bacterial stress response gene that is targeted by three different sRNAs. Selective 2'-hydroxyl acylation and primer extension, small-angle X-ray scattering, and Monte Carlo molecular dynamics simulations show that the distal face and lateral rim of Hfq interact with three sites in the rpoS leader, folding the RNA into a compact tertiary structure. These interactions are needed for sRNA regulation of rpoS translation and position the sRNA target adjacent to an sRNA binding region on the proximal face of Hfq. Our results show how Hfq specifically distorts the structure of the rpoS mRNA to enable sRNA base pairing and translational control.


Asunto(s)
Proteínas de Escherichia coli/química , Proteína de Factor 1 del Huésped/química , ARN Bacteriano/química , ARN Mensajero/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo , Simulación de Dinámica Molecular , Método de Montecarlo , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Dispersión del Ángulo Pequeño , Factor sigma/química , Factor sigma/genética , Factor sigma/metabolismo , Difracción de Rayos X
17.
J Biol Chem ; 290(39): 23656-69, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26272746

RESUMEN

Members of the Swi2/Snf2 (switch/sucrose non-fermentable) family depend on their ATPase activity to mobilize nucleic acid-protein complexes for gene expression. In bacteria, RapA is an RNA polymerase (RNAP)-associated Swi2/Snf2 protein that mediates RNAP recycling during transcription. It is known that the ATPase activity of RapA is stimulated by its interaction with RNAP. It is not known, however, how the RapA-RNAP interaction activates the enzyme. Previously, we determined the crystal structure of RapA. The structure revealed the dynamic nature of its N-terminal domain (Ntd), which prompted us to elucidate the solution structure and activity of both the full-length protein and its Ntd-truncated mutant (RapAΔN). Here, we report the ATPase activity of RapA and RapAΔN in the absence or presence of RNAP and the solution structures of RapA and RapAΔN either ligand-free or in complex with RNAP. Determined by small-angle x-ray scattering, the solution structures reveal a new conformation of RapA, define the binding mode and binding site of RapA on RNAP, and show that the binding sites of RapA and σ(70) on the surface of RNAP largely overlap. We conclude that the ATPase activity of RapA is inhibited by its Ntd but stimulated by RNAP in an allosteric fashion and that the conformational changes of RapA and its interaction with RNAP are essential for RNAP recycling. These and previous findings outline the functional cycle of RapA, which increases our understanding of the mechanism and regulation of Swi2/Snf2 proteins in general and of RapA in particular. The new structural information also leads to a hypothetical model of RapA in complex with RNAP immobilized during transcription.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Alostérica , ARN Polimerasas Dirigidas por ADN/química , Escherichia coli/enzimología , Conformación Proteica , Dispersión del Ángulo Pequeño , Transcripción Genética , Difracción de Rayos X
18.
J Biol Chem ; 290(13): 8527-38, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25666618

RESUMEN

Protein phosphorylation mediates essentially all aspects of cellular life. In humans, this is achieved by ∼500 kinases, each recognizing a specific consensus motif (CM) in the substrates. The majority of CMs are surface-exposed and are thought to be accessible to kinases for phosphorylation. Here we investigated the archetypical protein kinase A (PKA)-mediated phosphorylation of filamin, a major cytoskeletal protein that can adopt an autoinhibited conformation. Surprisingly, autoinhibited filamin is refractory to phosphorylation by PKA on a known Ser(2152) site despite its CM being exposed and the corresponding isolated peptide being readily phosphorylated. Structural analysis revealed that although the CM fits into the PKA active site its surrounding regions sterically clash with the kinase. However, upon ligand binding, filamin undergoes a conformational adjustment, allowing rapid phosphorylation on Ser(2152). These data uncover a novel ligand-induced conformational switch to trigger filamin phosphorylation. They further suggest a substrate shape-dependent filtering mechanism that channels specific exposed CM/kinase recognition in diverse signaling responses.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/química , Filaminas/química , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Secuencia de Consenso , Humanos , Datos de Secuencia Molecular , Fosfopéptidos/química , Fosforilación
19.
J Virol ; 89(20): 10371-82, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26246573

RESUMEN

UNLABELLED: Previously, no retroviral Gag protein has been highly purified in milligram quantities and in a biologically relevant and active form. We have purified Rous sarcoma virus (RSV) Gag protein and in parallel several truncation mutants of Gag and have studied their biophysical properties and membrane interactions in vitro. RSV Gag is unusual in that it is not naturally myristoylated. From its ability to assemble into virus-like particles in vitro, we infer that RSV Gag is biologically active. By size exclusion chromatography and small-angle X-ray scattering, Gag in solution appears extended and flexible, in contrast to previous reports on unmyristoylated HIV-1 Gag, which is compact. However, by neutron reflectometry measurements of RSV Gag bound to a supported bilayer, the protein appears to adopt a more compact, folded-over conformation. At physiological ionic strength, purified Gag binds strongly to liposomes containing acidic lipids. This interaction is stimulated by physiological levels of phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] and by cholesterol. However, unlike HIV-1 Gag, RSV Gag shows no sensitivity to acyl chain saturation. In contrast with full-length RSV Gag, the purified MA domain of Gag binds to liposomes only weakly. Similarly, both an N-terminally truncated version of Gag that is missing the MA domain and a C-terminally truncated version that is missing the NC domain bind only weakly. These results imply that NC contributes to membrane interaction in vitro, either by directly contacting acidic lipids or by promoting Gag multimerization. IMPORTANCE: Retroviruses like HIV assemble at and bud from the plasma membrane of cells. Assembly requires the interaction between thousands of Gag molecules to form a lattice. Previous work indicated that lattice formation at the plasma membrane is influenced by the conformation of monomeric HIV. We have extended this work to the more tractable RSV Gag. Our results show that RSV Gag is highly flexible and can adopt a folded-over conformation on a lipid bilayer, implicating both the N and C termini in membrane binding. In addition, binding of Gag to membranes is diminished when either terminal domain is truncated. RSV Gag membrane association is significantly less sensitive than HIV Gag membrane association to lipid acyl chain saturation. These findings shed light on Gag assembly and membrane binding, critical steps in the viral life cycle and an untapped target for antiretroviral drugs.


Asunto(s)
Membrana Celular/química , Productos del Gen gag/química , Membrana Dobles de Lípidos/química , Virus del Sarcoma de Rous/química , Virión/química , Colesterol/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Productos del Gen gag/genética , Productos del Gen gag/aislamiento & purificación , VIH-1/química , Hidrodinámica , Concentración Osmolar , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidilinositol 4,5-Difosfato/química , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Virus del Sarcoma de Rous/ultraestructura , Virión/ultraestructura
20.
J Biol Chem ; 289(27): 19204-17, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24831014

RESUMEN

The copper-sensing operon repressor (CsoR) is representative of a major Cu(I)-sensing family of bacterial metalloregulatory proteins that has evolved to prevent cytoplasmic copper toxicity. It is unknown how Cu(I) binding to tetrameric CsoRs mediates transcriptional derepression of copper resistance genes. A phylogenetic analysis of 227 DUF156 protein members, including biochemically or structurally characterized CsoR/RcnR repressors, reveals that Geobacillus thermodenitrificans (Gt) CsoR characterized here is representative of CsoRs from pathogenic bacilli Listeria monocytogenes and Bacillus anthracis. The 2.56 Å structure of Cu(I)-bound Gt CsoR reveals that Cu(I) binding induces a kink in the α2-helix between two conserved copper-ligating residues and folds an N-terminal tail (residues 12-19) over the Cu(I) binding site. NMR studies of Gt CsoR reveal that this tail is flexible in the apo-state with these dynamics quenched upon Cu(I) binding. Small angle x-ray scattering experiments on an N-terminally truncated Gt CsoR (Δ2-10) reveal that the Cu(I)-bound tetramer is hydrodynamically more compact than is the apo-state. The implications of these findings for the allosteric mechanisms of other CsoR/RcnR repressors are discussed.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cobre/metabolismo , Operón/genética , Proteínas Represoras/metabolismo , Regulación Alostérica/efectos de los fármacos , Bacillus anthracis/genética , Proteínas Bacterianas/genética , Cobre/farmacología , ADN Bacteriano/metabolismo , Regulación Bacteriana de la Expresión Génica , Geobacillus/metabolismo , Modelos Moleculares , Filogenia , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Proteínas Represoras/química , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA