Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Revista
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(30): e2310058, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38441362

RESUMEN

Nanocomposite materials have been thoroughly exploited in additive manufacturing, as a means to alter physical, chemical, and optical properties of resulting structures. Herein, nanocomposite materials suitable for direct laser writing (DLW) by two-photon polymerization are presented. These materials, comprising silica nanoparticles, bring significant added value to the technology through physical reinforcement and controllable photonic properties. Incorporation into acrylate photoresists, via a one-step fabrication process, enables the formation of complex structures with large overhangs. The inclusion of 150 nm silica nanoparticles in DLW photoresists at high concentrations, allows for the fabrication of composite microstructures that show reflected color, a product of the relative contributions from the quasi-ordering and random scattering. Using common DLW design parameters, such as slicing distance and structure dimension, a wide gamut of structural color, in solution, using a set concentration of nanoparticles is demonstrated. Numerical modeling is employed to predict the reflected wavelength of the pixel arrays, across the visible spectrum, and this information is used to encode reflected colors into different pixel arrays.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA