Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(4): e2204098120, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36656853

RESUMEN

The scale and pace of energy infrastructure development required to achieve net-zero greenhouse gas (GHG) emissions are unprecedented, yet our understanding of how to minimize its potential impacts on land and ocean use and natural resources is inadequate. Using high-resolution energy and land-use modeling, we developed spatially explicit scenarios for reaching an economy-wide net-zero GHG target in the western United States by 2050. We found that among net-zero policy cases that vary the rate of transportation and building electrification and use of fossil fuels, nuclear generation, and biomass, the "High Electrification" case, which utilizes electricity generation the most efficiently, had the lowest total land and ocean area requirements (84,000 to 105,000 km2 vs. 88,100 to 158,000 km2 across all other cases). Different levels of land and ocean use protections were applied to determine their effect on siting, environmental and social impacts, and energy costs. Meeting the net-zero target with stronger land and ocean use protections did not significantly alter the share of different energy generation technologies and only increased system costs by 3%, but decreased additional interstate transmission capacity by 20%. Yet, failure to avoid development in areas with high conservation value is likely to result in substantial habitat loss.

2.
Glob Chang Biol ; 25(6): 1889-1890, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30903637

RESUMEN

We respond to concerns raised by Baldocchi and Penuelas who question the potential for ecosystems to provide carbon sinks and storage, and conclude that we should focus on decarbonizing our energy systems. While we agree with many of their concerns, we arrive at a different conclusion: we need strong action to advance both clean energy solutions and natural climate solutions (NCS) if we are to stabilize warming well below 2°C. Cost-effective NCS can deliver 11.3 PgCO2 e yr-1 or ~30% of near-term climate mitigation needs through protection, improved management, and restoration of ecosystems, as we increase overall ambition.


Asunto(s)
Dióxido de Carbono , Efecto Invernadero , Atmósfera , Clima , Ecosistema , Física
3.
Oecologia ; 169(4): 1053-62, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22302512

RESUMEN

Nutrient addition to grasslands consistently causes species richness declines and productivity increases. Competition, particularly for light, is often assumed to produce this result. Using a long-term dataset from North American herbaceous plant communities, we tested whether height and clonal growth form together predict responses to fertilization because neither trait alone predicted species loss in a previous analysis. Species with a tall-runner growth form commonly increased in relative abundance in response to added nitrogen, while short species and those with a tall-clumped clonal growth form often decreased. The ability to increase in size via vegetative spread across space, while simultaneously occupying the canopy, conferred competitive advantage, although typically only the abundance of a single species within each height-clonal growth form significantly responded to fertilization in each experiment. Classifying species on the basis of two traits (height and clonal growth form) increases our ability to predict species responses to fertilization compared to either trait alone in predominantly herbaceous plant communities. Electronic supplementary material The online version of this article (doi:10.1007/s00442-012-2264-5) contains supplementary material, which is available to authorized users.


Asunto(s)
Nitrógeno/fisiología , Desarrollo de la Planta , Elymus/crecimiento & desarrollo , Fertilizantes , América del Norte , Panicum/crecimiento & desarrollo , Suelo , Especificidad de la Especie
4.
Sci Adv ; 7(23)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34088658

RESUMEN

Alongside the steep reductions needed in fossil fuel emissions, natural climate solutions (NCS) represent readily deployable options that can contribute to Canada's goals for emission reductions. We estimate the mitigation potential of 24 NCS related to the protection, management, and restoration of natural systems that can also deliver numerous co-benefits, such as enhanced soil productivity, clean air and water, and biodiversity conservation. NCS can provide up to 78.2 (41.0 to 115.1) Tg CO2e/year (95% CI) of mitigation annually in 2030 and 394.4 (173.2 to 612.4) Tg CO2e cumulatively between 2021 and 2030, with 34% available at ≤CAD 50/Mg CO2e. Avoided conversion of grassland, avoided peatland disturbance, cover crops, and improved forest management offer the largest mitigation opportunities. The mitigation identified here represents an important potential contribution to the Paris Agreement, such that NCS combined with existing mitigation plans could help Canada to meet or exceed its climate goals.

5.
PLoS One ; 14(1): e0209619, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30625183

RESUMEN

Single species conservation unites disparate partners for the conservation of one species. However, there are widespread concerns that single species conservation biases conservation efforts towards charismatic species at the expense of others. Here we investigate the extent to which sage grouse (Centrocercus sp.) conservation, the largest public-private conservation effort for a single species in the US, provides protections for other species from localized and landscape-scale threats. We compared the coverage provided by sage grouse Priority Areas for Conservation (PACs) to 81 sagebrush-associated vertebrate species distributions with potential coverage under multi-species conservation prioritization generated using the decision support tool Zonation. PACs. We found that the current PAC prioritization approach was not statistically different from a diversity-based prioritization approach and covers 23.3% of the landscape, and 24.8%, on average, of the habitat of the 81 species. The proportion of each species distribution at risk was lower inside PACs as compared to the region as a whole, even without management (land use change 30% lower, cheatgrass invasion 19% lower). Whether or not bias away from threat represents the most efficient use of conservation effort is a matter of considerable debate, though may be pragmatic in this landscape where capacity to address these threats is limited. The approach outlined here can be used to evaluate biological equitability of protections provided by flagship species in other settings.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Galliformes , Pradera , Animales , Artemisia
6.
Sci Adv ; 4(11): eaat1869, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30443593

RESUMEN

Limiting climate warming to <2°C requires increased mitigation efforts, including land stewardship, whose potential in the United States is poorly understood. We quantified the potential of natural climate solutions (NCS)-21 conservation, restoration, and improved land management interventions on natural and agricultural lands-to increase carbon storage and avoid greenhouse gas emissions in the United States. We found a maximum potential of 1.2 (0.9 to 1.6) Pg CO2e year-1, the equivalent of 21% of current net annual emissions of the United States. At current carbon market prices (USD 10 per Mg CO2e), 299 Tg CO2e year-1 could be achieved. NCS would also provide air and water filtration, flood control, soil health, wildlife habitat, and climate resilience benefits.

7.
Ecol Lett ; 10(7): 596-607, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17542938

RESUMEN

Global energy use and food production have increased nitrogen inputs to ecosystems worldwide, impacting plant community diversity, composition, and function. Previous studies show considerable variation across terrestrial herbaceous ecosystems in the magnitude of species loss following nitrogen (N) enrichment. What controls this variation remains unknown. We present results from 23 N-addition experiments across North America, representing a range of climatic, soil and plant community properties, to determine conditions that lead to greater diversity decline. Species loss in these communities ranged from 0 to 65% of control richness. Using hierarchical structural equation modelling, we found greater species loss in communities with a lower soil cation exchange capacity, colder regional temperature, and larger production increase following N addition, independent of initial species richness, plant productivity, and the relative abundance of most plant functional groups. Our results indicate sensitivity to N addition is co-determined by environmental conditions and production responsiveness, which overwhelm the effects of initial community structure and composition.


Asunto(s)
Biodiversidad , Fertilizantes , Modelos Biológicos , Nitrógeno , Desarrollo de la Planta , Suelo/análisis , América del Norte , Especificidad de la Especie , Temperatura
8.
Nat Commun ; 8(1): 2253, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-29269829

RESUMEN

Conservation organizations must redouble efforts to protect habitat given continuing biodiversity declines. Prioritization of future areas for protection is hampered by disagreements over what the ecological targets of conservation should be. Here we test the claim that such disagreements will become less important as conservation moves away from prioritizing areas for protection based only on ecological considerations and accounts for varying costs of protection using return-on-investment (ROI) methods. We combine a simulation approach with a case study of forests in the eastern United States, paying particular attention to how covariation between ecological benefits and economic costs influences agreement levels. For many conservation goals, agreement over spatial priorities improves with ROI methods. However, we also show that a reliance on ROI-based prioritization can sometimes exacerbate disagreements over priorities. As such, accounting for costs in conservation planning does not enable society to sidestep careful consideration of the ecological goals of conservation.


Asunto(s)
Conservación de los Recursos Naturales/economía , Costos y Análisis de Costo , Bosques , Objetivos Organizacionales , Biodiversidad , Técnicas de Planificación , Estados Unidos
9.
Sci Total Environ ; 581-582: 369-377, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28043701

RESUMEN

Extraction of oil and gas from unconventional sources, such as shale, has dramatically increased over the past ten years, raising the potential for spills or releases of chemicals, waste materials, and oil and gas. We analyzed spill data associated with unconventional wells from Colorado, New Mexico, North Dakota and Pennsylvania from 2005 to 2014, where we defined unconventional wells as horizontally drilled into an unconventional formation. We identified materials spilled by state and for each material we summarized frequency, volumes and spill rates. We evaluated the environmental risk of spills by calculating distance to the nearest stream and compared these distances to existing setback regulations. Finally, we summarized relative importance to drinking water in watersheds where spills occurred. Across all four states, we identified 21,300 unconventional wells and 6622 reported spills. The number of horizontal well bores increased sharply beginning in the late 2000s; spill rates also increased for all states except PA where the rate initially increased, reached a maximum in 2009 and then decreased. Wastewater, crude oil, drilling waste, and hydraulic fracturing fluid were the materials most often spilled; spilled volumes of these materials largely ranged from 100 to 10,000L. Across all states, the average distance of spills to a stream was highest in New Mexico (1379m), followed by Colorado (747m), North Dakota (598m) and then Pennsylvania (268m), and 7.0, 13.3, and 20.4% of spills occurred within existing surface water setback regulations of 30.5, 61.0, and 91.4m, respectively. Pennsylvania spills occurred in watersheds with a higher relative importance to drinking water than the other three states. Results from this study can inform risk assessments by providing improved input parameters on volume and rates of materials spilled, and guide regulations and the management policy of spills.

10.
PLoS One ; 8(4): e61209, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23577208

RESUMEN

Perennial biomass from grasslands managed for conservation of soil and biodiversity can be harvested for bioenergy. Until now, the quantity and quality of harvestable biomass from conservation grasslands in Minnesota, USA, was not known, and the factors that affect bioenergy potential from these systems have not been identified. We measured biomass yield, theoretical ethanol conversion efficiency, and plant tissue nitrogen (N) as metrics of bioenergy potential from mixed-species conservation grasslands harvested with commercial-scale equipment. With three years of data, we used mixed-effects models to determine factors that influence bioenergy potential. Sixty conservation grassland plots, each about 8 ha in size, were distributed among three locations in Minnesota. Harvest treatments were applied annually in autumn as a completely randomized block design. Biomass yield ranged from 0.5 to 5.7 Mg ha(-1). May precipitation increased biomass yield while precipitation in all other growing season months showed no affect. Averaged across all locations and years, theoretical ethanol conversion efficiency was 450 l Mg(-1) and the concentration of plant N was 7.1 g kg(-1), both similar to dedicated herbaceous bioenergy crops such as switchgrass. Biomass yield did not decline in the second or third year of harvest. Across years, biomass yields fluctuated 23% around the average. Surprisingly, forb cover was a better predictor of biomass yield than warm-season grass with a positive correlation with biomass yield in the south and a negative correlation at other locations. Variation in land ethanol yield was almost exclusively due to variation in biomass yield rather than biomass quality; therefore, efforts to increase biomass yield might be more economical than altering biomass composition when managing conservation grasslands for ethanol production. Our measurements of bioenergy potential, and the factors that control it, can serve as parameters for assessing the economic viability of harvesting conservation grasslands for bioenergy.


Asunto(s)
Biomasa , Conservación de los Recursos Naturales , Poaceae/metabolismo , Energía Renovable , Etanol/metabolismo , Minnesota , Modelos Teóricos , Nitrógeno/metabolismo , Suelo/química , Análisis Espacio-Temporal
11.
PLoS One ; 6(7): e20728, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21814540

RESUMEN

In many economies, wealth is strikingly concentrated. Entrepreneurs--individuals with ownership in for-profit enterprises--comprise a large portion of the wealthiest individuals, and their behavior may help explain patterns in the national distribution of wealth. Entrepreneurs are less diversified and more heavily invested in their own companies than is commonly assumed in economic models. We present an intentionally simplified individual-based model of wealth generation among entrepreneurs to assess the role of chance and determinism in the distribution of wealth. We demonstrate that chance alone, combined with the deterministic effects of compounding returns, can lead to unlimited concentration of wealth, such that the percentage of all wealth owned by a few entrepreneurs eventually approaches 100%. Specifically, concentration of wealth results when the rate of return on investment varies by entrepreneur and by time. This result is robust to inclusion of realities such as differing skill among entrepreneurs. The most likely overall growth rate of the economy decreases as businesses become less diverse, suggesting that high concentrations of wealth may adversely affect a country's economic growth. We show that a tax on large inherited fortunes, applied to a small portion of the most fortunate in the population, can efficiently arrest the concentration of wealth at intermediate levels.


Asunto(s)
Comercio , Desarrollo Económico , Emprendimiento , Modelos Económicos , Condiciones Sociales/economía , Humanos , Condiciones Sociales/clasificación , Factores Socioeconómicos
12.
Oecologia ; 158(1): 85-93, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18690478

RESUMEN

Most explanations for the positive effect of plant species diversity on productivity have focused on the efficiency of resource use, implicitly assuming that resource supply is constant. To test this assumption, we grew seedlings of Echinacea purpurea in soil collected beneath 10-year-old, experimental plant communities containing one, two, four, eight, or 16 native grassland species. The results of this greenhouse bioassay challenge the assumption of constant resource supply; we found that bioassay seedlings grown in soil collected from experimental communities containing 16 plant species produced 70% more biomass than seedlings grown in soil collected beneath monocultures. This increase was likely attributable to greater soil N availability, which had increased in higher diversity communities over the 10-year-duration of the experiment. In a distinction akin to the selection/complementarity partition commonly made in studies of diversity and productivity, we further determined whether the additive effects of functional groups or the interactive effects of functional groups explained the increase in fertility with diversity. The increase in bioassay seedling biomass with diversity was largely explained by a concomitant increase in N-fixer, C4 grass, forb, and C3 grass biomass with diversity, suggesting that the additive effects of these four functional groups at higher diversity contributed to enhance N availability and retention. Nevertheless, diversity still explained a significant amount of the residual variation in bioassay seedling biomass after functional group biomass was included in a multiple regression, suggesting that interactions also increased fertility in diverse communities. Our results suggest a mechanism, the fertility effect, by which increased plant species diversity may increase community productivity over time by increasing the supply of nutrients via both greater inputs and greater retention.


Asunto(s)
Biodiversidad , Echinacea/crecimiento & desarrollo , Nitrógeno/análisis , Plantones/crecimiento & desarrollo , Suelo/análisis , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA