Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Lett ; 49(11): 2882-2885, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824283

RESUMEN

We demonstrate mid-infrared time-domain optical coherence tomography (OCT) with an orientation-patterned GaP optical parametric oscillator. Instantaneous broadband mid-infrared spectra provide reduced scattering for OCT applications including cultural heritage, quality assurance, and security. B-scan calibrations performed across the wavelength tuning range show depth resolutions of 67 µm at 5.1 µm and 88 µm at 10.5 µm. Volumetric imaging inside a plastic bank card is demonstrated at 5.1 µm, with a 1 Hz A-scan rate that indicates the potential of stable broadband OPO sources to contribute to mid-infrared OCT.

2.
Opt Express ; 31(21): 34064-34073, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37859171

RESUMEN

By exploiting the excellent short-term phase stability between consecutive pulses from a free-running optical parametric oscillator frequency comb, we report the first example of hollow-core fiber-delivered heterodyne spectroscopy in the 3.1-3.8 µm wavelength range. The technique provides a means of spectroscopically interrogating a sample situated at the distal end of a fiber, with all electronics and light sources situated at the proximal end and with an inherent capability to suppress spectroscopically interfering features present in the free-space and in-fiber delivery path. Using a silica anti-resonant, hollow-core delivery fiber, we demonstrate high quality transmission and attenuated total reflectance spectroscopy of a plastic sample for fiber lengths of up to 40 m, significantly exceeding the few-meter lengths typically possible using solid-core fibers. The technique opens a route to implementing multi-species spectroscopic monitoring in remote and / or hostile industrial environments and medical applications.

3.
Opt Express ; 30(5): 7044-7052, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35299476

RESUMEN

High-resolution multi-species spectroscopy is achieved by delivering broadband 3-4-µm mid-infrared light through a 4.5-meter-long silica-based hollow-core optical fiber. Absorptions from H37Cl, H35Cl, H2O and CH4 present in the gas within the fiber core are observed, and the corresponding gas concentrations are obtained to 5-ppb precision using a high-resolution Fourier-transform spectrometer and a full-spectrum multi-species fitting algorithm. We show that by fully fitting the narrow absorption features of these light molecules their contributions can be nulled, enabling further spectroscopy of C3H6O and C3H8O contained in a Herriott cell after the fiber. As a demonstration of the potential to extend fiber-delivered broadband mid-infrared spectroscopy to significant distances, we present a high-resolution characterization of the transmission of a 63-meter length of hollow-core fiber, fully fitting the input and output spectra to obtain the intra-fiber gas concentrations. We show that, despite the fiber not having been purged, useful spectroscopic windows are still preserved which have the potential to enable hydrocarbon spectroscopy at the distal end of fibers with lengths of tens or even hundreds of meters.

4.
Opt Express ; 22(9): 10494-9, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24921751

RESUMEN

We report a fully stabilized 1030-nm Yb-fiber frequency comb operating at a pulse repetition frequency of 375 MHz. The comb spacing was referenced to a Rb-stabilized microwave synthesizer and the comb offset was stabilized by generating a super-continuum containing a coherent component at 780.2 nm which was heterodyned with a (87)Rb-stabilized external cavity diode laser to produce a radio-frequency beat used to actuate the carrier-envelope offset frequency of the Yb-fiber laser. The two-sample frequency deviation of the locked comb was 235 kHz for an averaging time of 50 seconds, and the comb remained locked for over 60 minutes with a root mean squared deviation of 236 kHz.

5.
Opt Express ; 21(24): 29083-9, 2013 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-24514459

RESUMEN

Optoelectronic imaging of integrated-circuits has revolutionized device design debug, failure analysis and electrical fault isolation; however modern probing techniques like laser-assisted device alteration (LADA) have failed to keep pace with the semiconductor industry's aggressive device scaling, meaning that previously satisfactory techniques no longer exhibit a sufficient ability to localize electrical faults, instead casting suspicion upon dozens of potential root-cause transistors. Here, we introduce a new high-resolution probing technique, two-photon laser-assisted device alteration (2pLADA), which exploits two-photon absorption (TPA) to provide precise three-dimensional localization of the photo-carriers injected by the TPA process, enabling us to implicate individual transistors separated by 100 nm. Furthermore, we illustrate the technique's capability to reveal speed-limiting transistor switching evolution with an unprecedented timing resolution approaching <10 ps. Together, the exceptional spatial and temporal resolutions demonstrated here now make it possible to extend optical fault localization to sub-14 nm technology nodes.


Asunto(s)
Rayos Láser , Impresión Molecular/instrumentación , Nanopartículas/química , Silicio/química , Transistores Electrónicos , Diseño de Equipo , Análisis de Falla de Equipo , Ensayo de Materiales , Nanopartículas/efectos de la radiación , Silicio/efectos de la radiación , Propiedades de Superficie/efectos de la radiación
6.
Opt Express ; 18(23): 24126-39, 2010 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-21164759

RESUMEN

We investigate the Raman gain spectra produced from pulse-pumping a highly nonlinear fiber with shaped optical pulses delivered from a Yb-doped fiber MOPA pump source. Cascaded Raman wavelength shifting up to seven Stokes orders is demonstrated and the counter-propagating gain is measured across all seven Stokes orders. Step-shaped optical pulses with varying instantaneous powers are then used to pump the highly nonlinear fiber, generating a controllable gain spectrum across multiple Stokes orders. Furthermore, we extend this work by using multiple pump wavelengths along with step-shaped pulses to increase the bandwidth of the Raman gain spectrum.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA