Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 149(18): 1405-1415, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38109351

RESUMEN

BACKGROUND: Exercise-induced cardiac remodeling can be profound, resulting in clinical overlap with dilated cardiomyopathy, yet the significance of reduced ejection fraction (EF) in athletes is unclear. The aim is to assess the prevalence, clinical consequences, and genetic predisposition of reduced EF in athletes. METHODS: Young endurance athletes were recruited from elite training programs and underwent comprehensive cardiac phenotyping and genetic testing. Those with reduced EF using cardiac magnetic resonance imaging (defined as left ventricular EF <50%, or right ventricular EF <45%, or both) were compared with athletes with normal EF. A validated polygenic risk score for indexed left ventricular end-systolic volume (LVESVi-PRS), previously associated with dilated cardiomyopathy, was assessed. Clinical events were recorded over a mean of 4.4 years. RESULTS: Of the 281 elite endurance athletes (22±8 years, 79.7% male) undergoing comprehensive assessment, 44 of 281 (15.7%) had reduced left ventricular EF (N=12; 4.3%), right ventricular EF (N=14; 5.0%), or both (N=18; 6.4%). Reduced EF was associated with a higher burden of ventricular premature beats (13.6% versus 3.8% with >100 ventricular premature beats/24 h; P=0.008) and lower left ventricular global longitudinal strain (-17%±2% versus -19%±2%; P<0.001). Athletes with reduced EF had a higher mean LVESVi-PRS (0.57±0.13 versus 0.51±0.14; P=0.009) with athletes in the top decile of LVESVi-PRS having an 11-fold increase in the likelihood of reduced EF compared with those in the bottom decile (P=0.034). Male sex and higher LVESVi-PRS were the only significant predictors of reduced EF in a multivariate analysis that included age and fitness. During follow-up, no athletes developed symptomatic heart failure or arrhythmias. Two athletes died, 1 from trauma and 1 from sudden cardiac death, the latter having a reduced right ventricular EF and a LVESVi-PRS >95%. CONCLUSIONS: Reduced EF occurs in approximately 1 in 6 elite endurance athletes and is related to genetic predisposition in addition to exercise training. Genetic and imaging markers may help identify endurance athletes in whom scrutiny about long-term clinical outcomes may be appropriate. REGISTRATION: URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=374976&isReview=true; Unique identifier: ACTRN12618000716268.


Asunto(s)
Atletas , Cardiomiopatía Dilatada , Volumen Sistólico , Humanos , Masculino , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/fisiopatología , Cardiomiopatía Dilatada/diagnóstico por imagen , Femenino , Adulto , Adulto Joven , Resistencia Física/genética , Adolescente , Predisposición Genética a la Enfermedad , Remodelación Ventricular , Función Ventricular Izquierda
2.
Med J Aust ; 220(8): 428-434, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38571440

RESUMEN

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality globally and is responsible for an estimated one-third of deaths as well as significant morbidity and health care utilisation. Technological and bioinformatic advances have facilitated the discovery of pathogenic germline variants for some specific CVDs, including familial hypercholesterolaemia, cardiomyopathies and arrhythmic syndromes. Use of these genetic tests for earlier disease identification is increasing due, in part, to decreasing costs, Medicare rebates, and consumer comfort with genetic testing. However, CVDs that occur more commonly, including coronary artery disease and atrial fibrillation, do not display monogenic inheritance patterns. Genetically, these diseases have generally been associated with many genetic variants each with a small effect size. This complexity can be expressed mathematically as a polygenic risk score. Genetic testing kits that provide polygenic risk scoring are becoming increasingly available directly to private-paying consumers outside the traditional clinical setting. An improved understanding of the evidence of genetics in CVD will offer clinicians new opportunities for individualised risk prediction and preventive therapy.


Asunto(s)
Enfermedades Cardiovasculares , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Humanos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/genética , Pruebas Genéticas/métodos , Medición de Riesgo/métodos
3.
Heart Lung Circ ; 33(4): 420-442, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570258

RESUMEN

Over the past 5 years, early diagnosis of and new treatments for cardiac amyloidosis (CA) have emerged that hold promise for early intervention. These include non-invasive diagnostic tests and disease modifying therapies. Recently, CA has been one of the first types of cardiomyopathy to be treated with gene editing techniques. Although these therapies are not yet widely available to patients in Australia and New Zealand, this may change in the near future. Given the rapid pace with which this field is evolving, it is important to view these advances within the Australian and New Zealand context. This Consensus Statement aims to update the Australian and New Zealand general physician and cardiologist with regards to the diagnosis, investigations, and management of CA.


Asunto(s)
Amiloidosis , Cardiomiopatías , Consenso , Humanos , Amiloidosis/terapia , Amiloidosis/diagnóstico , Australia , Cardiomiopatías/terapia , Cardiomiopatías/diagnóstico , Nueva Zelanda
4.
Heart Lung Circ ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39244450

RESUMEN

Atrial fibrillation (AF) is highly prevalent in the Australian community, ranking amongst the highest globally. The consequences of AF are significant. Stroke, dementia and heart failure risk are increased substantially, hospitalisations are amongst the highest for all cardiovascular causes, and Australians living with AF suffer from substantial symptoms that impact quality of life. Australian research has made a significant impact at the global level in advancing the care of patients living with AF. However, new strategies are required to reduce the growing incidence of AF and its associated healthcare demand. The Australian Cardiovascular Alliance (ACvA) has led the development of an arrhythmia clinical theme with the objective of tackling major research priorities to achieve a reduction in AF burden across Australia. In this summary, we highlight these research priorities with particular focus on the strengths of Australian research and the strategies needed to move forward in reducing incident AF and improving outcomes for those who live with this chronic condition.

5.
Intern Med J ; 53(2): 178-185, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36043846

RESUMEN

The landscape of genetically related cardiac disease continues to evolve. Heritable genetic variants can be a primary cause of familial or sporadic dilated cardiomyopathy (DCM). There is also increasing recognition that genetic variation is an important determinant of susceptibility to acquired causes of DCM. Genetic forms of DCM can show a wide variety of phenotypic manifestations. Identifying patients who are most likely to benefit from genetic testing is paramount. The objective of this review is to highlight the importance of recognising genetic DCM, key genotype-phenotype correlations and the value of genetic testing in clinical management for both the individual and their family. This is likely to become more relevant as management strategies continue to be refined with genotype-specific recommendations and disease-modifying therapies.


Asunto(s)
Cardiomiopatía Dilatada , Humanos , Cardiomiopatía Dilatada/genética , Pruebas Genéticas , Genotipo
6.
Circulation ; 144(20): 1600-1611, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34587765

RESUMEN

BACKGROUND: Filamin C truncating variants (FLNCtv) cause a form of arrhythmogenic cardiomyopathy: the mode of presentation, natural history, and risk stratification of FLNCtv remain incompletely explored. We aimed to develop a risk profile for refractory heart failure and life-threatening arrhythmias in a multicenter cohort of FLNCtv carriers. METHODS: FLNCtv carriers were identified from 10 tertiary care centers for genetic cardiomyopathies. Clinical and outcome data were compiled. Composite outcomes were all-cause mortality/heart transplantation/left ventricle assist device (D/HT/LVAD), nonarrhythmic death/HT/LVAD, and sudden cardiac death/major ventricular arrhythmias. Previously established cohorts of 46 patients with LMNA and 60 with DSP-related arrhythmogenic cardiomyopathies were used for prognostic comparison. RESULTS: Eighty-five patients carrying FLNCtv were included (42±15 years, 53% men, 45% probands). Phenotypes were heterogeneous at presentation: 49% dilated cardiomyopathy, 25% arrhythmogenic left dominant cardiomyopathy, 3% arrhythmogenic right ventricular cardiomyopathy. Left ventricular ejection fraction was <50% in 64% of carriers and 34% had right ventricular fractional area changes (RVFAC=(right ventricular end-diastolic area - right ventricular end-systolic area)/right ventricular end-diastolic area) <35%. During follow-up (median time 61 months), 19 (22%) carriers experienced D/HT/LVAD, 13 (15%) experienced nonarrhythmic death/HT/LVAD, and 23 (27%) experienced sudden cardiac death/major ventricular arrhythmias. The sudden cardiac death/major ventricular arrhythmias incidence of FLNCtv carriers did not significantly differ from LMNA carriers and DSP carriers. In FLNCtv carriers, left ventricular ejection fraction was associated with the risk of D/HT/LVAD and nonarrhythmic death/HT/LVAD. CONCLUSIONS: Among patients referred to tertiary referral centers, FLNCtv arrhythmogenic cardiomyopathy is phenotypically heterogeneous and characterized by a high risk of life-threatening arrhythmias, which does not seem to be associated with the severity of left ventricular dysfunction.


Asunto(s)
Cardiomiopatías/etiología , Filaminas/genética , Predisposición Genética a la Enfermedad , Variación Genética , Fenotipo , Adulto , Alelos , Cardiomiopatías/diagnóstico , Cardiomiopatías/epidemiología , Cardiomiopatías/terapia , Terapia Combinada , Manejo de la Enfermedad , Ecocardiografía , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud , Pronóstico , Sistema de Registros
7.
Curr Cardiol Rep ; 24(9): 1069-1075, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35759169

RESUMEN

PURPOSE OF REVIEW: Truncating TTN variants (TTNtv) are the most common genetic cause of dilated cardiomyopathy (DCM), but the underlying mechanisms are incompletely understood and effective therapeutic strategies are lacking. Here we review recent data that shed new light on the functional consequences of TTNtv and how these effects may vary with mutation location. RECENT FINDINGS: Whether TTNtv act by haploinsufficiency or dominant negative effects has been hotly debated. New evidence now implicates both mechanisms in TTNtv-related DCM, showing reduced titin content and persistent truncated titin that may be incorporated into protein aggregates. The extent to which aggregate formation and protein quality control defects differ with TTNtv location and contribute to contractile dysfunction is unresolved. TTNtv-associated DCM has a complex etiology that involves varying combinations of wild-type titin deficiency and dominant negative effects of truncated mutant titin. Therapeutic strategies to improve protein handling may be beneficial in some cases.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Cardiomiopatías/genética , Cardiomiopatía Dilatada/genética , Conectina/genética , Conectina/metabolismo , Humanos , Mutación
8.
Heart Lung Circ ; 30(1): 27-35, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32713767

RESUMEN

The burden of cardiovascular disease in women is being increasingly appreciated. Nevertheless, both clinicians and the general public are largely unaware that cardiovascular disease is the leading cause of death worldwide in women in all countries and that outcomes after a heart attack are worse for women than men. Of note, certain types of cardiovascular disease have a predilection for women, including spontaneous coronary artery dissection (SCAD) and fibromuscular dysplasia (FMD). Although uncommon, SCAD is being increasingly recognised as the cause of an acute coronary syndrome (ACS) and can recur. It is a potentially fatal, under-diagnosed condition that affects relatively young women, who often have few traditional risk factors, and is the commonest cause of a myocardial infarction associated with pregnancy. In contrast, FMD often remains silent but when manifested can also cause major sequelae, including renal infarction, stroke, cervical artery dissection and gut infarction. Here we provide an update on the diagnosis, aetiology and management of these important disorders that overwhelmingly affect women.


Asunto(s)
Anomalías de los Vasos Coronarios/etiología , Vasos Coronarios/diagnóstico por imagen , Displasia Fibromuscular/complicaciones , Enfermedades Vasculares/congénito , Angiografía Coronaria , Anomalías de los Vasos Coronarios/diagnóstico , Femenino , Displasia Fibromuscular/diagnóstico , Humanos , Factores de Riesgo , Enfermedades Vasculares/diagnóstico , Enfermedades Vasculares/etiología
10.
Proc Natl Acad Sci U S A ; 114(29): 7689-7694, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28679633

RESUMEN

Genetic variants that cause haploinsufficiency account for many autosomal dominant (AD) disorders. Gene-based diagnosis classifies variants that alter canonical splice signals as pathogenic, but due to imperfect understanding of RNA splice signals other variants that may create or eliminate splice sites are often clinically classified as variants of unknown significance (VUS). To improve recognition of pathogenic splice-altering variants in AD disorders, we used computational tools to prioritize VUS and developed a cell-based minigene splicing assay to confirm aberrant splicing. Using this two-step procedure we evaluated all rare variants in two AD cardiomyopathy genes, lamin A/C (LMNA) and myosin binding protein C (MYBPC3). We demonstrate that 13 LMNA and 35 MYBPC3 variants identified in cardiomyopathy patients alter RNA splicing, representing a 50% increase in the numbers of established damaging splice variants in these genes. Over half of these variants are annotated as VUS by clinical diagnostic laboratories. Familial analyses of one variant, a synonymous LMNA VUS, demonstrated segregation with cardiomyopathy affection status and altered cardiac LMNA splicing. Application of this strategy should improve diagnostic accuracy and variant classification in other haploinsufficient AD disorders.


Asunto(s)
Proteínas Portadoras/genética , Lamina Tipo A/genética , Mutación , Empalme del ARN , Adulto , Anciano , Alelos , Cardiomiopatías/genética , Biología Computacional , Femenino , Variación Genética , Genotipo , Células HEK293 , Haploinsuficiencia , Cardiopatías/genética , Trasplante de Corazón , Humanos , Masculino , Persona de Mediana Edad , Mutación Missense , Marcapaso Artificial , Linaje , Sitios de Empalme de ARN , Análisis de Secuencia de ADN , Adulto Joven
11.
Heart Lung Circ ; 29(4): 634-640, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31974023

RESUMEN

Coronary artery disease (CAD) and atrial fibrillation (AF) are two highly prevalent cardiovascular disorders that are associated with substantial morbidity and mortality. Conventional clinical risk factors for these disorders may not be identified prior to mid-adult life when pathophysiological processes are already established. A better understanding of the genetic underpinnings of disease should facilitate early detection of individuals at risk and preventative intervention. Single rare variants of large effect size that are causative for CAD, AF, or predisposing factors such as hypertension or hyperlipidaemia, may give rise to familial forms of disease. However, in most individuals, CAD and AF are complex traits in which combinations of genetic and acquired factors play a role. Common genetic variants that affect disease susceptibility have been identified by genome-wide association studies, but the predictive value of any single variant is limited. To address this issue, polygenic risk scores (PRS), comprised of suites of disease-associated common variants have been devised. In CAD and AF, incorporation of PRS into risk stratification algorithms has provided incremental prognostic information to clinical factors alone. The long-term health and economic benefits of PRS-guided clinical management remain to be determined however, and further evidence-based data are required.


Asunto(s)
Fibrilación Atrial , Enfermedad de la Arteria Coronaria , Predisposición Genética a la Enfermedad , Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Fibrilación Atrial/genética , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/terapia , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/fisiopatología , Enfermedad de la Arteria Coronaria/terapia , Estudio de Asociación del Genoma Completo , Humanos , Factores de Riesgo
12.
Heart Lung Circ ; 29(4): 575-583, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32001152

RESUMEN

Amyloid cardiomyopathy is emerging as an important and under-recognised cause of heart failure and cardiac arrhythmias, especially in older adults. This disorder is characterised by extracellular deposition of amyloid fibrils that form due to misfolding of secreted light chains (AL) or transthyretin protein (ATTR). In ATTR, amyloid aggregates typically result from excessive accumulation of wild-type transthyretin (ATTRwt) or from protein structural defects caused by TTR gene variants (ATTRv). Amyloid fibril deposition may predominantly affect the heart or show multi-system involvement. Previously considered to be rare and inexorably progressive with no specific therapy, there has been enormous recent interest in ATTR cardiomyopathy due to upwardly-revised estimates of disease prevalence together with development of disease-modifying interventions. Because of this, there is a clinical imperative to have a high index of suspicion to identify potential cases and to be aware of contemporary diagnostic methods and treatment options. Genetic testing should be offered to all patients with proven ATTR to access the benefits of new therapies specific to ATTRv and allow predictive testing of family members. With heightened awareness of amyloid cardiomyopathy and expanded use of genetic testing, a substantial rise in the numbers of asymptomatic individuals who are carriers of pathogenic variants is expected, and optimal strategies for monitoring and treatment of these individuals at risk need to be determined. Pre-emptive administration of fibril-modifying therapies provides an unprecedented opportunity for disease prevention and promises to change amyloid cardiomyopathy from being a fatal to a treatable disorder.


Asunto(s)
Neuropatías Amiloides Familiares , Cardiomiopatías , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Neuropatías Amiloides Familiares/complicaciones , Neuropatías Amiloides Familiares/genética , Neuropatías Amiloides Familiares/terapia , Cardiomiopatías/etiología , Cardiomiopatías/genética , Cardiomiopatías/terapia , Humanos , Prealbúmina/genética
13.
Heart Lung Circ ; 29(4): 566-574, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31974027

RESUMEN

Advances in human genome sequencing have re-invigorated genetics studies of dilated cardiomyopathy (DCM), facilitating genetic testing and clinical applications. With a range of genetic testing options now available, new challenges arise for data interpretation and identifying single pathogenic variants from the many thousands of rare variants present in every individual. There is accumulating evidence that genetic factors have an important role in the pathogenesis of DCM. However, although more than 100 genes have been implicated to date, the sensitivity of genetic testing, even in familial disease, is only ∼25-40%. As more patients are genotyped, nuanced information about disease phenotypes is emerging including variability in age of onset and penetrance of DCM, as well as additional cardiac and extra-cardiac features. Genotype-phenotype correlations have also identified a subset of genes that can be highly arrhythmogenic or show frequent progression to heart failure. Recognition of variants in these genes is important as this may impact on the timing of implantable cardioverter-defibrillators or heart transplantation. Finding a causative variant in a patient with DCM allows predictive testing of family members and provides an opportunity for preventative intervention. Diagnostic imaging modalities such as speckle-tracking echocardiography and cardiac magnetic resonance imaging are increasingly being used to detect and monitor pre-clinical ventricular dysfunction in asymptomatic variant carriers. Although there are several examples of successful genotype-based therapy, optimal strategies for implementation of precision medicine in familial DCM remain to be determined. Identification of modifiable co-morbidities and lifestyle factors that exacerbate or protect against DCM development in genetically-predisposed individuals remains a key component of family management.


Asunto(s)
Arritmias Cardíacas , Cardiomiopatía Dilatada , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Mutación , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Arritmias Cardíacas/terapia , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/fisiopatología , Cardiomiopatía Dilatada/terapia , Humanos
14.
Heart Lung Circ ; 29(7): e85-e87, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32418874

RESUMEN

In the context of the current global COVID-19 pandemic, this Consensus Statement provides current recommendations for patients with, or at risk of developing, genetic heart disease, and for their health care management and service provision in Australia and New Zealand. Apart from general recommendations, there are specific recommendations for the following conditions: cardiomyopathy, Brugada syndrome (including in children), long QT syndrome (LQTS) and catecholaminergic polymorphic ventricular tachycardia (CPVT). Other recommendations are relevant to patient self-care and primary health care.


Asunto(s)
Trastorno del Sistema de Conducción Cardíaco , Cardiología , Control de Enfermedades Transmisibles , Infecciones por Coronavirus , Pandemias , Manejo de Atención al Paciente/métodos , Neumonía Viral , Adulto , Australia/epidemiología , Betacoronavirus , COVID-19 , Trastorno del Sistema de Conducción Cardíaco/congénito , Trastorno del Sistema de Conducción Cardíaco/epidemiología , Trastorno del Sistema de Conducción Cardíaco/terapia , Cardiología/métodos , Cardiología/organización & administración , Cardiología/tendencias , Niño , Control de Enfermedades Transmisibles/métodos , Control de Enfermedades Transmisibles/organización & administración , Consenso , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Humanos , Nueva Zelanda/epidemiología , Pandemias/prevención & control , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , SARS-CoV-2 , Sociedades Médicas
15.
Genet Med ; 21(3): 650-662, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29961767

RESUMEN

PURPOSE: We evaluated genome sequencing (GS) as an alternative to multigene panel sequencing (PS) for genetic testing in dilated cardiomyopathy (DCM). METHODS: Forty-two patients with familial DCM underwent PS and GS, and detection rates of rare single-nucleotide variants and small insertions/deletions in panel genes were compared. Loss-of-function variants in 406 cardiac-enriched genes were evaluated, and an assessment of structural variation was performed. RESULTS: GS provided broader and more uniform coverage than PS, with high concordance for rare variant detection in panel genes. GS identified all PS-identified pathogenic or likely pathogenic variants as well as two additional likely pathogenic variants: one was missed by PS due to low coverage, the other was a known disease-causing variant in a gene not included on the panel. No loss-of-function variants in the extended gene set met clinical criteria for pathogenicity. One BAG3 structural variant was classified as pathogenic. CONCLUSION: Our data support the use of GS for genetic testing in DCM, with high variant detection accuracy and a capacity to identify structural variants. GS provides an opportunity to go beyond suites of established disease genes, but the incremental yield of clinically actionable variants is limited by a paucity of genetic and functional evidence for DCM association.


Asunto(s)
Cardiomiopatía Dilatada/genética , Pruebas Genéticas/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Bases , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Mutación INDEL , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN/métodos , Secuenciación Completa del Genoma/métodos
16.
Genet Med ; 21(1): 133-143, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29892087

RESUMEN

PURPOSE: We evaluated strategies for identifying disease-causing variants in genetic testing for dilated cardiomyopathy (DCM). METHODS: Cardiomyopathy gene panel testing was performed in 532 DCM patients and 527 healthy control subjects. Rare variants in 41 genes were stratified using variant-level and gene-level characteristics. RESULTS: A majority of DCM cases and controls carried rare protein-altering cardiomyopathy gene variants. Variant-level characteristics alone had limited discriminative value. Differentiation between groups was substantially improved by addition of gene-level information that incorporated ranking of genes based on literature evidence for disease association. The odds of DCM were increased to nearly 9-fold for truncating variants or high-impact missense variants in the subset of 14 genes that had the strongest biological links to DCM (P <0.0001). For some of these genes, DCM-associated variants appeared to be clustered in key protein functional domains. Multiple rare variants were present in many family probands, however, there was generally only one "driver" pathogenic variant that cosegregated with disease. CONCLUSION: Rare variants in cardiomyopathy genes can be effectively stratified by combining variant-level and gene-level information. Prioritization of genes based on their a priori likelihood of disease causation is a key factor in identifying clinically actionable variants in cardiac genetic testing.


Asunto(s)
Cardiomiopatía Dilatada/genética , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades Raras/genética , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/patología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Mutación Missense , Linaje , Enfermedades Raras/diagnóstico , Enfermedades Raras/patología
17.
Curr Opin Cardiol ; 34(3): 275-281, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30672791

RESUMEN

PURPOSE OF REVIEW: Atrial cardiomyopathy is a frequently encountered but underappreciated clinical entity that is characterized by altered atrial size and function. Although traditionally considered a primary atrial disorder, atrial cardiomyopathy was recently redefined to include secondary atrial remodelling. This conceptual shift has implications for the scope of etiological factors and intervention strategies. Our aim was to evaluate the potential contribution of genetics to atrial cardiomyopathy. RECENT FINDINGS: Although the genetics of atrial cardiomyopathy is relatively unexplored, extensive efforts have been made to identify the genetic underpinnings of atrial fibrillation, which is a common complication of atrial cardiomyopathy. Interestingly, in-silico and functional studies suggest that atrial fibrillation-associated genetic variants mainly act by generating a proarrhythmogenic atrial cardiomyopathic substrate. Investigating the genetic basis of primary defects in atrial structure and function, as well as the genetic contributions to cardiac disorders, comorbidities and lifestyle factors that result in secondary atrial remodelling should expand the spectrum of genetic factors that directly or indirectly cause atrial cardiomyopathy and help to resolve the missing heritability of atrial fibrillation. SUMMARY: Elucidation of the genetic basis of atrial cardiomyopathy may provide new risk markers and facilitate personalized interventions for complications, such as atrial fibrillation, heart failure, and stroke.


Asunto(s)
Fibrilación Atrial , Remodelación Atrial , Cardiomiopatías , Fibrilación Atrial/genética , Remodelación Atrial/genética , Cardiomiopatías/genética , Predisposición Genética a la Enfermedad , Atrios Cardíacos , Humanos , Accidente Cerebrovascular/genética
18.
Heart Lung Circ ; 28(1): 31-38, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30482687

RESUMEN

Cardiac arrhythmias are frequently seen in patients with dilated cardiomyopathy (DCM) and can precipitate heart failure and death. In patients with non-ischaemic DCM, evidence for the benefit of an implantable cardioverter-defibrillator (ICD) for primary prevention of sudden cardiac death has recently been questioned. Algorithms devised to identify high-risk individuals who might benefit most from ICD implantation have focussed on clinical criteria with little attention paid to the underlying aetiology of DCM. Malignant ventricular arrhythmias often occur as a nonspecific consequence of DCM but can also be a primary manifestation of disease in heritable forms of DCM and may precede DCM onset. We undertook a literature search and identified 11 genes that have been associated with DCM and ventricular arrhythmias in multiple kindreds. Many of these genes fall into a diagnostic grey zone between left-dominant arrhythmogenic right ventricular cardiomyopathy and arrhythmic DCM. Genes associated predominantly with arrhythmic DCM included LMNA and SCN5A, as well as the more recently-reported DCM disease genes, RBM20, FLNC, and TTN. Recognition of arrhythmic DCM genotypes is important, as this may impact on clinical management. In particular, prophylactic ICD implantation and early referral for heart transplantation may be indicated in genotype-positive individuals. Collectively, these findings argue in favour of including genetic testing in standard-of-care management of familial DCM. Further studies in genotyped patient cohorts are required to establish the long-term health and economic benefits of this strategy.


Asunto(s)
Algoritmos , Arritmias Cardíacas , Cardiomiopatía Dilatada , Pruebas Genéticas/métodos , Prevención Primaria/métodos , Arritmias Cardíacas/epidemiología , Arritmias Cardíacas/etiología , Arritmias Cardíacas/prevención & control , Cardiomiopatía Dilatada/complicaciones , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/genética , Genotipo , Salud Global , Humanos , Incidencia , Pronóstico
20.
Circ J ; 82(3): 620-628, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29415914

RESUMEN

Echocardiography is an invaluable tool for characterizing cardiac structure and function in vivo. Technological advances in high-frequency ultrasound over the past 3 decades have increased spatial and temporal resolution, and facilitated many important clinical and basic science discoveries. Successful reverse translation of established echocardiographic techniques, including M-mode, B-mode, color Doppler, pulsed-wave Doppler, tissue Doppler and, most recently, myocardial deformation imaging, from clinical cardiology into the basic science laboratory has enabled researchers to achieve a deeper understanding of myocardial phenotypes in health and disease. With high-frequency echocardiography, detailed evaluation of ventricular systolic function in a range of small animal models is now possible. Furthermore, improvements in frame rate and the advent of diastolic strain rate imaging, when coupled with the use of select pulsed-wave Doppler parameters, such as isovolumic relaxation time and E wave deceleration, have enabled nuanced interpretation of ventricular diastolic function. Comparing pulsed-wave Doppler indices of atrioventricular inflow during early and late diastole with parameters that describe the simultaneous myocardial deformation (e.g., tissue Doppler é and á, global longitudinal strain rate and global longitudinal velocity) may yield additional insights related to myocardial compliance. This review will provide a historical perspective of the development of high-frequency echocardiography and consider how ongoing innovation will help future-proof this important imaging modality for 21st century translational research.


Asunto(s)
Ecocardiografía/tendencias , Animales , Diagnóstico por Imagen/métodos , Ecocardiografía/instrumentación , Ecocardiografía/métodos , Ecocardiografía Doppler de Pulso , Corazón/diagnóstico por imagen , Humanos , Ratones , Investigación/instrumentación , Investigación/tendencias , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA