Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(50): e2304411120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38048469

RESUMEN

Addressing the ongoing biodiversity crisis requires identifying the winners and losers of global change. Species are often categorized based on how they respond to habitat loss; for example, species restricted to natural environments, those that most often occur in anthropogenic habitats, and generalists that do well in both. However, species might switch habitat affiliations across time and space: an organism may venture into human-modified areas in benign regions but retreat into thermally buffered forested habitats in areas with high temperatures. Here, we apply community occupancy models to a large-scale camera trapping dataset with 29 mammal species distributed over 2,485 sites across the continental United States, to ask three questions. First, are species' responses to forest and anthropogenic habitats consistent across continental scales? Second, do macroclimatic conditions explain spatial variation in species responses to land use? Third, can species traits elucidate which taxa are most likely to show climate-dependent habitat associations? We found that all species exhibited significant spatial variation in how they respond to land-use, tending to avoid anthropogenic areas and increasingly use forests in hotter regions. In the hottest regions, species occupancy was 50% higher in forested compared to open habitats, whereas in the coldest regions, the trend reversed. Larger species with larger ranges, herbivores, and primary predators were more likely to change their habitat affiliations than top predators, which consistently affiliated with high forest cover. Our findings suggest that climatic conditions influence species' space-use and that maintaining forest cover can help protect mammals from warming climates.


Asunto(s)
Ecosistema , Mamíferos , Animales , Humanos , Temperatura , Bosques , Biodiversidad , América del Norte , Conservación de los Recursos Naturales
2.
Conserv Biol ; 36(3): e13871, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34904294

RESUMEN

Conservation technology holds the potential to vastly increase conservationists' ability to understand and address critical environmental challenges, but systemic constraints appear to hamper its development and adoption. Understanding of these constraints and opportunities for advancement remains limited. We conducted a global online survey of 248 conservation technology users and developers to identify perceptions of existing tools' current performance and potential impact, user and developer constraints, and key opportunities for growth. We also conducted focus groups with 45 leading experts to triangulate findings. The technologies with the highest perceived potential were machine learning and computer vision, eDNA and genomics, and networked sensors. A total of 95%, 94%, and 92% respondents, respectively, rated them as very helpful or game changers. The most pressing challenges affecting the field as a whole were competition for limited funding, duplication of efforts, and inadequate capacity building. A total of 76%, 67%, and 55% respondents, respectively, identified these as primary concerns. The key opportunities for growth identified in focus groups were increasing collaboration and information sharing, improving the interoperability of tools, and enhancing capacity for data analyses at scale. Some constraints appeared to disproportionately affect marginalized groups. Respondents in countries with developing economies were more likely to report being constrained by upfront costs, maintenance costs, and development funding (p = 0.048, odds ratio [OR] = 2.78; p = 0.005, OR = 4.23; p = 0.024, OR = 4.26), and female respondents were more likely to report being constrained by development funding and perceived technical skills (p = 0.027, OR = 3.98; p = 0.048, OR = 2.33). To our knowledge, this is the first attempt to formally capture the perspectives and needs of the global conservation technology community, providing foundational data that can serve as a benchmark to measure progress. We see tremendous potential for this community to further the vision they define, in which collaboration trumps competition; solutions are open, accessible, and interoperable; and user-friendly processing tools empower the rapid translation of data into conservation action. Article impact statement: Addressing financing, coordination, and capacity-building constraints is critical to the development and adoption of conservation technology.


La tecnología de conservación tiene el potencial para incrementar considerablemente la habilidad de los conservacionistas para entender y lidiar con los retos ambientales más importantes, pero las restricciones sistémicas parecen dificultar su desarrollo y adopción. La comprensión de estas restricciones y las oportunidades para el avance todavía son limitadas. Encuestamos en línea a 248 usuarios y programadores mundiales de tecnología de conservación para identificar las percepciones existentes del desempeño e impacto potencial de las herramientas actuales, restricciones para los usuarios y programadores y oportunidades clave para el crecimiento. También realizamos grupos de discusión con 45 expertos destacados para triangular los hallazgos. Las tecnologías con el potencial percibido más alto fueron el aprendizaje mecánico y la visión por computadora, la genómica y el eADN y los sensores en red. El 95%, 94% y 92% de los respondientes, respectivamente, clasificó estas tecnologías como muy útiles o como puntos de inflexión. Los retos más apremiantes que afectaron al área como conjunto fueron la competencia por el financiamiento limitado, la duplicación de esfuerzos y el desarrollo inadecuado de capacidades. El 76%, 67% y 55% de los respondientes, respectivamente, identificaron estos retos como de interés primario. Las oportunidades clave para el crecimiento que se identificaron en los grupos de diálogo fueron el incremento de la colaboración y la distribución de información, la mejoría de la operatividad entre herramientas y la potenciación de la capacidad de análisis de datos a escala. Algunas restricciones parecieron afectar desproporcionadamente a grupos marginalizados. Los respondientes de países con economías en desarrollo tuvieron mayor probabilidad de reportar la restricción por los costos iniciales, costos de mantenimiento y la financiación del desarrollo (p = 0.048, tasa de probabilidad [OR] = 2.78; p = 0.005, OR = 4.23; p = 0.024, OR = 4.26), y las mujeres respondientes tuvieron una mayor probabilidad de reportar restricciones por la financiación del desarrollo y habilidades técnicas percibidas (p = 0.027, OR = 3.98; p = 0.048, OR = 2.33). A nuestro entendimiento, este es el primero intento por capturar formalmente las perspectivas y necesidades de la comunidad mundial de la tecnología de conservación, proporcionando datos fundamentales que pueden servir como referencia para medir el progreso. Vemos un potencial tremendo para que esta comunidad amplíe la visión que definen, en la cual la colaboración se sobrepone a la competencia; las soluciones son abierta, accesibles e interoperativas; y las herramientas intuitivas de procesamiento capacitan la traducción veloz de datos a acciones de conservación.


Asunto(s)
Conservación de los Recursos Naturales , Tecnología , Femenino , Humanos , Masculino
3.
PLoS Biol ; 14(1): e1002357, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26785119

RESUMEN

Extinction rates in the Anthropocene are three orders of magnitude higher than background and disproportionately occur in the tropics, home of half the world's species. Despite global efforts to combat tropical species extinctions, lack of high-quality, objective information on tropical biodiversity has hampered quantitative evaluation of conservation strategies. In particular, the scarcity of population-level monitoring in tropical forests has stymied assessment of biodiversity outcomes, such as the status and trends of animal populations in protected areas. Here, we evaluate occupancy trends for 511 populations of terrestrial mammals and birds, representing 244 species from 15 tropical forest protected areas on three continents. For the first time to our knowledge, we use annual surveys from tropical forests worldwide that employ a standardized camera trapping protocol, and we compute data analytics that correct for imperfect detection. We found that occupancy declined in 22%, increased in 17%, and exhibited no change in 22% of populations during the last 3-8 years, while 39% of populations were detected too infrequently to assess occupancy changes. Despite extensive variability in occupancy trends, these 15 tropical protected areas have not exhibited systematic declines in biodiversity (i.e., occupancy, richness, or evenness) at the community level. Our results differ from reports of widespread biodiversity declines based on aggregated secondary data and expert opinion and suggest less extreme deterioration in tropical forest protected areas. We simultaneously fill an important conservation data gap and demonstrate the value of large-scale monitoring infrastructure and powerful analytics, which can be scaled to incorporate additional sites, ecosystems, and monitoring methods. In an era of catastrophic biodiversity loss, robust indicators produced from standardized monitoring infrastructure are critical to accurately assess population outcomes and identify conservation strategies that can avert biodiversity collapse.


Asunto(s)
Biodiversidad , Aves , Conservación de los Recursos Naturales , Bosques , Mamíferos , Animales , Ecología/métodos , Clima Tropical
4.
Philos Trans R Soc Lond B Biol Sci ; 378(1881): 20220232, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37246379

RESUMEN

Growing threats to biodiversity demand timely, detailed information on species occurrence, diversity and abundance at large scales. Camera traps (CTs), combined with computer vision models, provide an efficient method to survey species of certain taxa with high spatio-temporal resolution. We test the potential of CTs to close biodiversity knowledge gaps by comparing CT records of terrestrial mammals and birds from the recently released Wildlife Insights platform to publicly available occurrences from many observation types in the Global Biodiversity Information Facility. In locations with CTs, we found they sampled a greater number of days (mean = 133 versus 57 days) and documented additional species (mean increase of 1% of expected mammals). For species with CT data, we found CTs provided novel documentation of their ranges (93% of mammals and 48% of birds). Countries with the largest boost in data coverage were in the historically underrepresented southern hemisphere. Although embargoes increase data providers' willingness to share data, they cause a lag in data availability. Our work shows that the continued collection and mobilization of CT data, especially when combined with data sharing that supports attribution and privacy, has the potential to offer a critical lens into biodiversity. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.


Asunto(s)
Animales Salvajes , Biodiversidad , Animales , Mamíferos , Aves , Conocimiento
5.
Nutr Cycl Agroecosyst ; 109(1): 77-102, 2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-33456317

RESUMEN

Spatial predictions of soil macro and micro-nutrient content across Sub-Saharan Africa at 250 m spatial resolution and for 0-30 cm depth interval are presented. Predictions were produced for 15 target nutrients: organic carbon (C) and total (organic) nitrogen (N), total phosphorus (P), and extractable-phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), sodium (Na), iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), aluminum (Al) and boron (B). Model training was performed using soil samples from ca. 59,000 locations (a compilation of soil samples from the AfSIS, EthioSIS, One Acre Fund, VitalSigns and legacy soil data) and an extensive stack of remote sensing covariates in addition to landform, lithologic and land cover maps. An ensemble model was then created for each nutrient from two machine learning algorithms- random forest and gradient boosting, as implemented in R packages ranger and xgboost-and then used to generate predictions in a fully-optimized computing system. Cross-validation revealed that apart from S, P and B, significant models can be produced for most targeted nutrients (R-square between 40-85%). Further comparison with OFRA field trial database shows that soil nutrients are indeed critical for agricultural development, with Mn, Zn, Al, B and Na, appearing as the most important nutrients for predicting crop yield. A limiting factor for mapping nutrients using the existing point data in Africa appears to be (1) the high spatial clustering of sampling locations, and (2) missing more detailed parent material/geological maps. Logical steps towards improving prediction accuracies include: further collection of input (training) point samples, further harmonization of measurement methods, addition of more detailed covariates specific to Africa, and implementation of a full spatiotemporal statistical modeling framework.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA