Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phytother Res ; 38(2): 925-938, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38098253

RESUMEN

Ethiopians have deep-rooted traditions of using plants to treat ailments affecting humans and domesticated animals. Approximately 80% of the population continues to rely on traditional medicine, including for the prevention and treatment of viral diseases. Many antiviral plants are available to and widely used by communities in areas where access to conventional healthcare systems is limited. In some cases, pharmacological studies also confirm the potent antiviral properties of Ethiopian plants. Building on traditional knowledge of medicinal plants and testing their antiviral properties may help to expand options to address the global pandemic of COVID-19 including its recently isolated virulent variants and prepare for similar outbreaks in the future. Here, we provide an ethnobotanical and pharmacological inventory of Ethiopian medicinal plants that might contribute to the prevention and treatment of viral diseases. We identified 387 species, about 6% of Ethiopia's known flora, for which records of use by local communities and traditional herbalists have been documented for the treatment of viral diseases. We provide a framework for further investigation and development of this vital resource much anticipated to help combat emergent viral diseases along with existing ones in Ethiopia and elsewhere.


Asunto(s)
Etnofarmacología , Plantas Medicinales , Virosis , Animales , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Etnobotánica , Conocimientos, Actitudes y Práctica en Salud , Fitoterapia , Virosis/tratamiento farmacológico
2.
Biol Lett ; 15(7): 20190357, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31337290

RESUMEN

Fire is the most frequent disturbance in the Ericaceous Belt (ca 3000-4300 m.a.s.l.), one of the most important plant communities of tropical African mountains. Through resprouting after fire, Erica establishes a positive fire feedback under certain burning regimes. However, present-day human activity in the Bale Mountains of Ethiopia includes fire and grazing systems that may have a negative impact on the resilience of the ericaceous ecosystem. Current knowledge of Erica-fire relationships is based on studies of modern vegetation, lacking a longer time perspective that can shed light on baseline conditions for the fire feedback. We hypothesize that fire has influenced Erica communities in the Bale Mountains at millennial time-scales. To test this, we (1) identify the fire history of the Bale Mountains through a pollen and charcoal record from Garba Guracha, a lake at 3950 m.a.s.l., and (2) describe the long-term bidirectional feedback between wildfire and Erica, which may control the ecosystem's resilience. Our results support fire occurrence in the area since ca 14 000 years ago, with particularly intense burning during the early Holocene, 10.8-6.0 cal ka BP. We show that a positive feedback between Erica abundance and fire occurrence was in operation throughout the Lateglacial and Holocene, and interpret the Ericaceous Belt of the Ethiopian mountains as a long-term fire resilient ecosystem. We propose that controlled burning should be an integral part of landscape management in the Bale Mountains National Park.


Asunto(s)
Ecosistema , Incendios , Carbón Orgánico , Etiopía , Humanos , Lagos
3.
Plant Divers ; 41(4): 220-228, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31528781

RESUMEN

The aim of this research is to investigate the patterns of vascular plant species richness, diversity, and distribution along an elevation gradient in the Abune Yosef mountain range, Ethiopia. Preferential systematic sampling was employed to collect vegetation and environmental data along the elevation gradient. We found that plant species richness declines monotonically from low to high elevations. Specifically, vascular plant species richness and diversity were lower in the Afroalpine grassland (high elevation) than in the Dry evergreen Afromontane forest and Ericaceous forest (low elevations). In contrast, endemic vascular plant richness was significantly higher in the Afroalpine grassland than in the Dry evergreen Afromontane forest and Ericaceous forest. Elevation showed a significant impact on the richness, diversity, and endemism of vascular plants. According to Sørensen's coefficient, the similarity between Dry evergreen Afromontane forest and Ericaceous forest vegetation types is higher (32%) than the similarity between Ericaceous forest and Afroalpine grassland (18%). Only 5% similarity was recorded between the Dry evergreen Afromontane forest and Afroalpine grassland. Growth forms showed different elevational richness patterns. Trees and liana increased monotonically up to 3300 m. Shrub and herb richness patterns followed a hump-shaped and inverted hump-shaped pattern along the elevation gradient. The elevation patterns of vascular plant species richness, diversity, and growth form in the present study may be attributed to differences in management intensity, spatial heterogeneity, microclimatic variations, and anthropogenic disturbances.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA