Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Magn Reson Imaging ; 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37855368

RESUMEN

BACKGROUND: Given that changes in brain water content are often correlated with disease, investigating water content non-invasively and in vivo could lead to a better understanding of the pathogenesis of several neurologic diseases. PURPOSE: To adapt a super-resolution-based technique, previously developed for humans, to the rat brain and report in vivo high-resolution (HR) water content maps in comparison with ex vivo wet/dry methods. STUDY TYPE: Prospective. ANIMAL MODEL: Eight healthy male Wistar rats. FIELD STRENGTH/SEQUENCE: 9.4-T, multi-echo gradient-echo (mGRE) sequence. ASSESSMENT: Using super-resolution reconstruction (SRR), a HR mGRE image (200 µm isotropic) was reconstructed from three low-resolution (LR) orthogonal whole-brain images in each animal, which was followed by water content mapping in vivo. The animals were subsequently sacrificed, the brains excised and divided into five regions (front left, front right, middle left, middle right, and cerebellum-brainstem regions), and the water content was measured ex vivo using wet/dry measurements as the reference standard. The water content values of the in vivo and ex vivo methods were then compared for the whole brain and also for the different regions separately. STATISTICAL TESTS: Friedman's non-parametric test was used to test difference between the five regions, and Pearson's correlation coefficient was used for correlation between in vivo and ex vivo measurements. A P-value <0.05 was considered statistically significant. RESULTS: Water content values derived from in vivo MR measurements showed strong correlations with water content measured ex vivo at a regional level (r = 0.902). Different brain regions showed significantly different water content values. Water content values were highest in the frontal brain, followed by the midbrain, and lowest in the cerebellum and brainstem regions. DATA CONCLUSION: An in vivo technique to achieve HR isotropic water content maps in the rat brain using SRR was adopted in this study. The MRI-derived water content values obtained using the technique showed strong correlations with water content values obtained using ex vivo wet/dry methods. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 1.

2.
Hum Brain Mapp ; 43(6): 2026-2040, 2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35044722

RESUMEN

The growing demand for precise and reliable biomarkers in psychiatry is fueling research interest in the hope that identifying quantifiable indicators will improve diagnoses and treatment planning across a range of mental health conditions. The individual properties of brain networks at rest have been highlighted as a possible source for such biomarkers, with the added advantage that they are relatively straightforward to obtain. However, an important prerequisite for their consideration is their reproducibility. While the reliability of resting-state (RS) measurements has often been studied at standard field strengths, they have rarely been investigated using ultrahigh-field (UHF) magnetic resonance imaging (MRI) systems. We investigated the intersession stability of four functional MRI RS parameters-amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF; representing the spontaneous brain activity), regional homogeneity (ReHo; measure of local connectivity), and degree centrality (DC; measure of long-range connectivity)-in three RS networks, previously shown to play an important role in several psychiatric diseases-the default mode network (DMN), the central executive network (CEN), and the salience network (SN). Our investigation at individual subject space revealed a strong stability for ALFF, ReHo, and DC in all three networks, and a moderate level of stability in fALFF. Furthermore, the internetwork connectivity between each network pair was strongly stable between CEN/SN and moderately stable between DMN/SN and DMN/SN. The high degree of reliability and reproducibility in capturing the properties of the three major RS networks by means of UHF-MRI points to its applicability as a potentially useful tool in the search for disease-relevant biomarkers.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Reproducibilidad de los Resultados
3.
Neuroimage ; 232: 117910, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33647497

RESUMEN

OBJECT: This study evaluates inter-site and intra-site reproducibility at ten different 7 T sites for quantitative brain imaging. MATERIAL AND METHODS: Two subjects - termed the "traveling heads" - were imaged at ten different 7 T sites with a harmonized quantitative brain MR imaging protocol. In conjunction with the system calibration, MP2RAGE, QSM, CEST and multi-parametric mapping/relaxometry were examined. RESULTS: Quantitative measurements with MP2RAGE showed very high reproducibility across sites and subjects, and errors were in concordance with previous results and other field strengths. QSM had high inter-site reproducibility for relevant subcortical volumes. CEST imaging revealed systematic differences between the sites, but reproducibility was comparable to results in the literature. Relaxometry had also very high agreement between sites, but due to the high sensitivity, differences caused by different applications of the B1 calibration of the two RF coil types used were observed. CONCLUSION: Our results show that quantitative brain imaging can be performed with high reproducibility at 7 T and with similar reliability as found at 3 T for multicenter studies of the supratentorial brain.


Asunto(s)
Encéfalo/diagnóstico por imagen , Cabeza/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/normas , Imagen por Resonancia Magnética/normas , Adulto , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Reproducibilidad de los Resultados
4.
Magn Reson Med ; 85(5): 2892-2903, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33200403

RESUMEN

PURPOSE: To propose two innovations to existing eddy current characterization techniques, which include (1) an efficient spatio-temporal sampling scheme and (2) a model-based fitting of spherical harmonic eddy current components. THEORY AND METHODS: This work introduces a three-plane 2D image-based acquisition scheme to efficiently sample eddy current fields. Additionally, a model-based spherical harmonic decomposition is presented, which reduces fitting noise using a rank minimization to impose an exponential decay on the eddy current amplitude evolution. Both techniques are applied in combination and analyzed in simulations for their applicability in reconstructing suitable pre-emphasis parameters. In a proof-of-concept measurement, the routine is tested for its propriety to correctly quantify user-defined field dynamics. Furthermore, based on acquired precompensation and postcompensation eddy current data, the suitability of pre-emphasis parameters calculated based on the proposed technique is evaluated. RESULTS: Simulation results derived from 500 data sets demonstrate the applicability of the acquisition scheme for the spatio-temporal sampling of eddy current fields. Compared with a conventional data processing strategy, the proposed model-based approach yields pre-emphasis parameters that reduce the average maximum residual field offset within a 10-cm-diameter spherical volume from 3.17 Hz to 0.58 Hz. Experimental data prove the proposed routine to be suitable to measure and effectively compensate for eddy currents within 10 minutes of acquisition time. CONCLUSION: The proposed framework was found to be well-suited to efficiently characterize and compensate for eddy current fields in a one-time calibration effort. It can be applied to facilitate pre-emphasis implementations, such as for dynamic B0 shimming applications.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Encéfalo , Calibración , Simulación por Computador
5.
Magn Reson Med ; 82(1): 263-275, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30883909

RESUMEN

PURPOSE: To overcome existing challenges in dynamic B0 shimming by implementing a shim optimization algorithm which limits shim current amplitudes and their temporal variation through the application of constraints and regularization terms. THEORY AND METHODS: Spherical harmonic dynamic B0 shimming is complicated by eddy currents, ill-posed optimizations, and the need for strong power supplies. Based on the fact that eddy current amplitudes are proportional to the magnitude of the shim current changes, and assuming a smoothness of the B0 inhomogeneity variation in the slice direction, a novel algorithm was implemented to reduce eddy current generation by limiting interslice shim current changes. Shim degeneracy issues and resulting high current amplitudes are additionally addressed by penalizing high solution norms. Applicability of the proposed algorithm was validated in simulations and in phantom and in vivo measurements. RESULTS: High-order dynamic shimming simulations and measurements have shown that absolute shim current amplitudes and their temporal variation can be substantially reduced with negligible loss in achievable B0 homogeneity. Whereas conventional dynamic shim updating optimizations improve the B0 homogeneity, on average, by a factor of 2.1 over second-order static solutions, our proposed routine reached a factor of 2.0, while simultaneously providing a 14-fold reduction of the average maximum shim current changes. CONCLUSIONS: The proposed algorithm substantially reduces the shim amplitudes and their temporal variation, while only marginally affecting the achievable B0  homogeneity. As a result, it has the potential to mitigate the remaining challenges in dynamic B0 shimming and help in making its application more readily available.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Encéfalo/diagnóstico por imagen , Campos Electromagnéticos , Humanos , Fantasmas de Imagen
6.
J Transl Med ; 15(1): 264, 2017 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-29282070

RESUMEN

BACKGROUND: Magnetic resonance is a major preclinical and clinical imaging modality ideally suited for longitudinal studies, e.g. in pharmacological developments. The lack of a proven platform that maintains an identical imaging protocol between preclinical and clinical platforms is solved with the construction of an animal scanner based on clinical hard- and software. METHODS: A small animal magnet and gradient system were connected to a clinical MR system. Several hardware components were either modified or built in-house to achieve compatibility. The clinical software was modified to account for the different field-of-view of a preclinical MR system. The established scanner was evaluated using clinical QA protocols, and platform compatibility for translational research was verified against clinical scanners of different field strength. RESULTS: The constructed animal scanner operates with the majority of clinical imaging sequences. Translational research is greatly facilitated as protocols can be shared between preclinical and clinical platforms. Hence, when maintaining sequences parameters, maximum similarity between pulses played out on a human or an animal system is maintained. CONCLUSION: Coupling of a small animal magnet with a clinical MR system is a flexible, easy to use way to establish and advance translational imaging capability. It provides cost and labor efficient translational capability as no tedious sequence reprogramming between moieties is required and cross-platform compatibility of sequences facilitates multi-center studies.


Asunto(s)
Imagen por Resonancia Magnética , Investigación Biomédica Traslacional , Animales , Ratones , Ondas de Radio , Ratas , Médula Espinal/diagnóstico por imagen , Interfaz Usuario-Computador
7.
Neuroimage ; 102 Pt 1: 71-9, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23796544

RESUMEN

In this perspectives article we highlight the advantages of simultaneous acquisition of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). As MRI moves towards using ultra-high magnetic fields in the quest for increased signal-to-noise, the question arises whether combined EEG-fMRI measurements are feasible at magnetic fields of 7 T and higher. We describe the challenges of MRI-EEG at 1.5, 3, 7 and 9.4 T and review the proposed solutions. In an outlook, we discuss further developments such as simultaneous trimodal imaging using MR, positron emission tomography (PET) and EEG under the same physiological conditions in the same subject.


Asunto(s)
Electroencefalografía/métodos , Imagen por Resonancia Magnética/métodos , Imagen Multimodal , Neuroimagen/métodos , Artefactos , Humanos , Campos Magnéticos
8.
Neuroimage ; 96: 44-53, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24721332

RESUMEN

Sodium is the second most abundant MR-active nucleus in the human body and is of fundamental importance for the function of cells. Previous studies have shown that many pathophysiological conditions induce an increase of the average tissue sodium concentration. To date, several MR sequences have been used to measure sodium. The aim of this study was to evaluate the performance and suitability of five different MR sequences for quantitative sodium imaging on a whole-body 9.4Tesla MR scanner. Numerical simulations, phantom experiments and in vivo imaging on healthy subjects were carried out. The results demonstrate that, of these five sequences, the Twisted Projection Imaging sequence is optimal for quantitative sodium imaging, as it combines a number of features which are particularly relevant in order to obtain high quality quantitative images of sodium. These include: ultra-short echo times, efficient k-space sampling, and robustness against off-resonance effects. Mapping of sodium in the human brain is a technique not yet fully explored in neuroscience. Ultra-high field sodium MRI may provide new insights into the pathogenesis of neurological disorders, and may help to develop new and disease-specific biomarkers for the early diagnosis and therapeutic intervention before irreversible brain damage has taken place.


Asunto(s)
Encéfalo/metabolismo , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Sodio/metabolismo , Adulto , Mapeo Encefálico/métodos , Femenino , Humanos , Masculino , Distribución Tisular
9.
IEEE Rev Biomed Eng ; 17: 351-368, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37022919

RESUMEN

Parallel transmission (pTX) techniques are required to tackle a number of challenges, e.g., the inhomogeneous distribution of the transmit field and elevated specific absorption rate (SAR), in ultra-high field (UHF) MR imaging. Additionally, they offer multiple degrees of freedom to create temporally- and spatially-tailored transverse magnetization. Given the increasing availability of MRI systems at 7 T and above, it is anticipated that interest in pTX applications will grow accordingly. One of the key components in MR systems capable of pTX is the design of the transmit array, as this has a major impact on performance in terms of power requirements, SAR and RF pulse design. While several reviews on pTX pulse design and the clinical applicability of UHF exist, there is currently no systematic review of pTX transmit/transceiver coils and their associated performance. In this article, we analyze transmit array concepts to determine the strengths and weaknesses of different types of design. We systematically review the different types of individual antennas employed for UHF, their combination into pTX arrays, and methods to decouple the individual elements. We also reiterate figures-of-merit (FoMs) frequently employed to describe the performance of pTX arrays and summarize published array designs in terms of these FoMs.


Asunto(s)
Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Diseño de Equipo
10.
Neuroimage ; 68: 214-20, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23247189

RESUMEN

The simultaneous acquisition of electroencephalographic (EEG) and functional magnetic resonance imaging (fMRI) data has gained momentum in recent years due to the synergistic effects of the two modalities with regard to temporal and spatial resolution. Currently, only EEG-data recorded in fields of up to 7 T have been reported. We investigated the feasibility of recording EEG inside a 9.4 T static magnetic field, specifically to determine whether meaningful EEG information could be recovered from the data after removal of the cardiac-related artefact. EEG-data were recorded reliably and reproducibly at 9.4 T and the cardiac-related artefact increased in amplitude with increasing B0, as expected. Furthermore, we were able to correct for the cardiac-related artefact and identify auditory event related responses at 9.4 T in 75% of subjects using independent component analysis (ICA). Also by means of ICA we detected event related spectral perturbations (ERSP) in subjects at 9.4 T in response to opening/closing the eyes comparable with the response at 0 T. Overall our results suggest that it is possible to record meaningful EEG data at ultra-high magnetic fields. The simultaneous EEG-fMRI approach at ultra-high-fields opens up the horizon for investigating brain dynamics at a superb spatial resolution and a temporal resolution in the millisecond domain.


Asunto(s)
Artefactos , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Encéfalo/fisiología , Potenciales Evocados/fisiología , Femenino , Frecuencia Cardíaca , Humanos , Procesamiento de Imagen Asistido por Computador , Campos Magnéticos , Masculino , Pulso Arterial , Procesamiento de Señales Asistido por Computador , Adulto Joven
11.
Magn Reson Med ; 69(6): 1805-12, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22782491

RESUMEN

Given the absence of a body coil, the radio frequency screen of a whole-body 9.4T magnetic resonance imaging scanner can be used as a circular waveguide. In the unloaded case, the screen allows propagation of the dominant TE11- as well as the TM01-mode. In the first part of this study, the optimum coupling of a circular polarized TE11-mode was determined empirically for excitation and reception with a rectangular patch antenna. Employing full-wave simulations, two simulation models and two phantoms, different patch positions were tested to find the optimum position with respect to coupled power and homogenous excitation field. The best simulation results were validated with measurements. The second part of this study describes the design and measurements of a multimode excitation device. Using the parallel transmit system of the MR scanner, all propagable traveling wave modes could be excited and detected independently. The performance of the multimode device related to field of view, B1+-efficiency and radio frequency shimming was assessed by phantom measurements. Initial results show that three modes are sufficient to homogeneously excite regions of interest at 9.4 T.


Asunto(s)
Algoritmos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Almacenamiento y Recuperación de la Información/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Técnica de Sustracción , Inteligencia Artificial , Gráficos por Computador , Simulación por Computador , Aumento de la Imagen/métodos , Modelos Biológicos , Modelos Estadísticos , Análisis Numérico Asistido por Computador , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador , Interfaz Usuario-Computador
12.
IEEE Trans Med Imaging ; 42(5): 1424-1430, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37015697

RESUMEN

MR measurement using a combination of X-nuclei and proton MRI is of great interest as the information provided by the two nuclei is highly complementary, with the X-nuclei signal giving metabolic data relating to potential biomarkers and the proton signal affording anatomical details. Due to the relatively weak signal obtained from X-nuclei, combining an X-nuclei coil with a proton coil is also advantageous for [Formula: see text] shimming and scout images. One approach to building a double-resonant coil is to modify the coil geometry. Here, to achieve double-resonance, a 2× 1 ladder network was designed and tuned at both proton and X-nuclei frequencies successfully. Due to coupling between closed wires, the double-tuned coil generates a shifted transmit efficiency pattern compared to that of the single-tuned loop at the 7T MRI proton frequency. To compensate for the shifted pattern, one part of the 2× 1 ladder network was folded, and the tuning and performance of the folded double-tuned coil were evaluated in simulations and MR measurements. The proposed structure was further evaluated with overlapped decoupling in a receive-only array. The results show that our proposed folded double-tuned coil moderated the shifted pattern of a straight double-tuned loop coil and provided minimum losses at both proton and X-nuclei frequencies. The proposed folded double-tuned loop coil has also been further extended to a receive-only array.


Asunto(s)
Imagen por Resonancia Magnética , Protones , Fantasmas de Imagen , Diseño de Equipo , Imagen por Resonancia Magnética/métodos , Núcleo Celular
13.
IEEE Rev Biomed Eng ; PP2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37015609

RESUMEN

Simultaneously operating MR-PET systems have the potential to provide synergetic multi-parametric information, and, as such, interest surrounding their use and development is increasing. However, despite the potential advantages offered by fully combined MR-PET systems, implementing this hybrid integration is technically laborious, and any factors degrading the quality of either modality must be circumvented to ensure optimal performance. In order to attain the best possible quality from both systems, most full MR-PET integrations tend to place the shielded PET system inside the MRI system, close to the target volume of the subject. The radiofrequency (RF) coil used in MRI systems is a key factor in determining the quality of the MR images, and, in simultaneous acquisition, it is generally positioned inside the PET system and PET imaging region, potentially resulting in attenuation and artefacts in the PET images. Therefore, when designing hybrid MR-PET systems, it is imperative that consideration be given to the RF coils inside the PET system. In this review, we present current state-of-the-art RF coil designs used for hybrid MR-PET experiments and discuss various design strategies for constructing PET transparent RF coils.

14.
Z Med Phys ; 32(3): 334-345, 2022 Aug.
Artículo en Alemán | MEDLINE | ID: mdl-35144850

RESUMEN

Spoke trajectory parallel transmit (pTX) excitation in ultra-high field MRI enables B1+ inhomogeneities arising from the shortened RF wavelength in biological tissue to be mitigated. To this end, current RF excitation pulse design algorithms either employ the acquisition of field maps with subsequent non-linear optimization or a universal approach applying robust pre-computed pulses. We suggest and evaluate an intermediate method that uses a subset of acquired field maps combined with generative machine learning models to reduce the pulse calibration time while offering more tailored excitation than robust pulses (RP). The possibility of employing image-to-image translation and semantic image synthesis machine learning models based on generative adversarial networks (GANs) to deduce the missing field maps is examined. Additionally, an RF pulse design that employs a predictive machine learning model to find solutions for the non-linear (two-spokes) pulse design problem is investigated. As a proof of concept, we present simulation results obtained with the suggested machine learning approaches that were trained on a limited data-set, acquired in vivo. The achieved excitation homogeneity based on a subset of half of the B1+ maps acquired in the calibration scans and half of the B1+ maps synthesized with GANs is comparable with state of the art pulse design methods when using the full set of calibration data while halving the total calibration time. By employing RP dictionaries or machine-learning RF pulse predictions, the total calibration time can be reduced significantly as these methods take only seconds or milliseconds per slice, respectively.


Asunto(s)
Aprendizaje Profundo , Algoritmos , Encéfalo , Calibración , Simulación por Computador , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen
15.
IEEE Trans Med Imaging ; 41(5): 1104-1113, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34860648

RESUMEN

Simultaneous MR-PET/-SPECT is an emerging technology that capitalises on the invaluable advantages of both modalities, allowing access to numerous sensitive tracers and superior soft-tissue contrast alongside versatile functional imaging capabilities. However, to optimise these capabilities, concurrent acquisitions require the MRI antenna located inside the PET/SPECT field-of-view to be operated without compromising any aspects of system performance or image quality compared to the stand-alone instrumentation. Here, we report a novel gamma-radiation-transparent antenna concept. The end-fed J-shape antenna is particularly adept for hybrid ultra-high field MR-PET/-SPECT applications as it enables all highly attenuating materials to be placed outside the imaging field-of-view. Furthermore, this unique configuration also provides advantages in stand-alone MR applications by reducing the amount of coupling between the cables and the antenna elements, and by lowering the potential specific absorption rate burden. The use of this new design was experimentally verified according to the important features for both ultra-high field MRI and the 511 keV transmission scan. The reconstructed attenuation maps evidently showed much lower attenuation (  âˆ¼ 15 %) for the proposed array when compared to the conventional dipole antenna array since there were no high-density components. In MR, it was observed that the signal-to-noise ratio from the whole volume obtained using the proposed array was comparable to that acquired by the conventional array which was also in agreement with the simulation results. The unique feature, J-shape array, would enable simultaneous MR-PET/-SPECT experiments to be conducted without unduly compromising any aspects of system performance and image quality compared to the stand-alone instrumentation.


Asunto(s)
Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Tomografía de Emisión de Positrones/métodos , Relación Señal-Ruido , Tomografía Computarizada de Emisión de Fotón Único
16.
IEEE Trans Med Imaging ; 40(8): 2015-2022, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33798075

RESUMEN

Simultaneous MR-PET is an increasingly popular multimodal imaging technique that is able to combine metabolic information obtained from PET with anatomical/functional information from MRI. One of the key technological challenges of the technique is the integration of a PET-transparent MR coil system, a solution to which is demonstrated here for a double-tuned 1H/31P head coil at 3 T. Two single-resonant birdcage coils tuned to the 1H and 31P resonances were arranged in an interleaved fashion and electrically decoupled with the use of trap circuits. All high 511 keV quanta absorbing components were arranged outside the PET field-of-view in order to minimize count rate reduction. The materials inside the PET field-of-view were carefully evaluated and chosen for minimum impact on the PET image quality. As far as possible, the coil case was geometrically optimized to avoid sharp transitions in attenuation, which may potentially result in streaking artefacts during PET image reconstruction. The coil caused a count rate loss of just above 5% when inserted into the PET detector ring. Except for the anterior region, which was designed to maintain free openings for increased patient comfort, an almost uniform distribution of 511 keV attenuation was maintained around the circumference of the coil. MR-related performance for both nuclei was similar or slightly better than that of a commercial double-tuned coil, despite the MR-PET coil having a close-fitting RF screen to shield the PET and MR electronics from possible electromagnetic interferences.


Asunto(s)
Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X , Diseño de Equipo , Humanos , Imagen por Resonancia Magnética , Imagen Multimodal , Fantasmas de Imagen
17.
PLoS One ; 15(8): e0237494, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32804972

RESUMEN

Modern magnetic resonance imaging systems are equipped with a large number of receive connectors in order to optimally support a large field-of-view and/or high acceleration in parallel imaging using high-channel count, phased array coils. Given that the MR system is equipped with a limited number of digitizing receivers and in order to support operation of multinuclear coil arrays, these connectors need to be flexibly routed to the receiver outside the RF shielded examination room. However, for a number of practical, economic and safety reasons, it is better to only route a subset of the connectors. This is usually accomplished with the use of switch matrices. These exist in a variety of topologies and differ in routing flexibility and technological implementation. A highly flexible implementation is a crossbar topology that allows to any one input to be routed to any one output and can use single PIN diodes as active elements. However, in this configuration, long open-ended transmission lines can potentially remain connected to the signal path leading to high transmission losses. Thus, especially for high-field systems compensation mechanisms are required to remove the effects of open-ended transmission line stubs. The selection of a limited number of lumped element reactance values to compensate for the for the effect of transmission line stubs in large-scale switch matrices capable of supporting multi-nuclear operation is non-trivial and is a combinatorial problem of high order. Here, we demonstrate the use of metaheuristic approaches to optimize the circuit design of these matrices that additionally carry out the optimization of distances between the parallel transmission lines. For a matrix with 128 inputs and 64 outputs a realization is proposed that displays a worst-case insertion loss of 3.8 dB.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Algoritmos , Diseño de Equipo , Imagen por Resonancia Magnética/instrumentación , Procesamiento de Señales Asistido por Computador , Relación Señal-Ruido
18.
IEEE Trans Med Imaging ; 39(12): 4225-4236, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32763849

RESUMEN

We present an evolution-strategy based approach to solve the magnitude least squares (MLS) design problem of low flip-angle slice-selective parallel transmit RF pulses for ultra-high field MRI using SAR and peak-RF-constraints. A combined transmit k-space trajectory and RF pulse weight optimization is proposed in two algorithmic steps. The first step is a coarse grid search to find an initial solution that fulfills all constraints for the subsequent multistage optimization. This avoids convergence to the next nearest local minimum. The second step attempts to refine the results using multiple evolution strategies. We compare the performance of our approach with the non-convex optimization methods described in the literature. The proposed algorithm converges for phantom and in vivo data and only requires an initial estimate of the range of suitable regularization parameters. It demonstrates improved excitation homogeneity compared to published spoke-design methods and allows optimization for homogeneity with a subsequent reduction in the SAR burden. Moreover, excitation homogeneity and the SAR burden can be balanced against each other, enabling a further reduction in SAR at the cost of minor relaxations in excitation homogeneity. This feature makes the algorithm a good candidate for SAR limited sequences in ultra-high field imaging. The algorithm is validated using phantom and in vivo measurements obtained with a 16-channel transmit array at 9.4T.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Análisis de los Mínimos Cuadrados , Fantasmas de Imagen
19.
Magn Reson Imaging ; 72: 103-116, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32653426

RESUMEN

With the increasing availability of ultra-high field MRI systems, studying non-proton nuclei (X-nuclei), such as 23Na and 31P has received great interest. X-nuclei are able to provide insight into important cellular processes and energy metabolism in tissues and by monitoring these nuclei closely it is possible to establish links to pathological conditions and neurodegenerative diseases. In order to investigate X-nuclei, a well-designed radiofrequency (RF) system with a multi-tuned RF coil is required. However, as the intrinsic sensitivity of non-proton nuclei is lower compared to 1H, it is important to ensure that the signal-to-noise ratio (SNR) of the X-nuclei is as high as possible. This review aims to give a comprehensive overview of previous efforts, with particular focus on the design concept of multi-tuned coils, predominantly for brain applications. In order to guide the readers, the main body of the review is categorised into two parts: state-of-the art according to the single or multiple design structures and emerging technologies. A more detailed description is given in each subsection relating to the specific design approaches of, mostly, double-tuned coils, including using traps, PIN-diodes, nested and metamaterial, together with explanations of their novelties, optimal solutions and trade-offs.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Ondas de Radio , Humanos , Imagen por Resonancia Magnética/instrumentación , Fantasmas de Imagen , Relación Señal-Ruido , Análisis Espectral
20.
Phys Med Biol ; 65(11): 115005, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32268314

RESUMEN

Prostate cancer is one of the most common cancers among men and its early detection is critical for its successful treatment. The use of multimodal imaging, such as MR-PET, is most advantageous as it is able to provide detailed information about the prostate. However, as the human prostate is flexible and can move into different positions under external conditions, it is important to localise the focused region-of-interest using both MRI and PET under identical circumstances. In this work, we designed five commonly used linear and quadrature radiofrequency surface coils suitable for hybrid MR-PET use in endorectal applications. Due to the endorectal design and the shielded PET insert, the outer face of the coils investigated was curved and the region to be imaged was outside the volume of the coil. The tilting angles of the coils were varied with respect to the main magnetic field direction. This was done to approximate the various positions from which the prostate could be imaged. The transmit efficiencies and safety excitation efficiencies from simulations, together with the signal-to-noise ratios from the MR images were calculated and analysed. Overall, it was found that the overlapped loops driven in quadrature were superior to the other types of coils we tested. In order to determine the effect of the different coil designs on PET, transmission scans were carried out, and it was observed that the differences between attenuation maps with and without the coils were negligible. The findings of this work can provide useful guidance for the integration of such coil designs into MR-PET hybrid systems in the future.


Asunto(s)
Imagen por Resonancia Magnética/instrumentación , Imagen Multimodal/instrumentación , Tomografía de Emisión de Positrones/instrumentación , Neoplasias de la Próstata/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Imagen Multimodal/métodos , Fantasmas de Imagen , Tomografía de Emisión de Positrones/métodos , Ondas de Radio , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA