Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nano Lett ; 24(20): 6092-6101, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728297

RESUMEN

Despite their successful implementation in the COVID-19 vaccines, lipid nanoparticles (LNPs) still face a central limitation in the delivery of mRNA payloads: endosomal trapping. Improving upon this inefficiency could afford improved drug delivery systems, paving the way toward safer and more effective mRNA-based medicines. Here, we present polyphenolic nanoparticle platforms (PARCELs) as effective mRNA delivery systems. In brief, our investigation begins with a computationally guided structural analysis of 1825 discrete polyphenolic structural data points across 73 diverse small molecule polyphenols and 25 molecular parameters. We then generate structurally diverse PARCELs, evaluating their in vitro mechanism and activity, ultimately highlighting the superior endosomal escape properties of PARCELs relative to analogous LNPs. Finally, we examine the in vivo biodistribution, protein expression, and therapeutic efficacy of PARCELs in mice. In undertaking this approach, the goal of this study is to establish PARCELs as viable delivery platforms for safe and effective mRNA delivery.


Asunto(s)
Nanopartículas , Polifenoles , ARN Mensajero , Polifenoles/química , Animales , ARN Mensajero/genética , Ratones , Nanopartículas/química , Humanos , SARS-CoV-2/efectos de los fármacos , COVID-19 , Sistemas de Liberación de Medicamentos , Distribución Tisular , Lípidos/química , Endosomas/metabolismo , Liposomas
2.
J Am Chem Soc ; 146(25): 17365-17376, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38874565

RESUMEN

Messenger RNA (mRNA) delivery platforms often facilitate protein expression in the liver following intravenous injection and have been optimized for use in normally oxygenated cells (21% O2 atmosphere). However, there is a growing need for mRNA therapy in diseases affecting non-liver organs, such as the lungs. Additionally, many diseases are characterized by hypoxia (<21% O2 atmosphere), a state of abnormally low oxygenation in cells and tissues that can reduce the efficacy of mRNA therapies by upwards of 80%. Here, we report a Tunable Lung-Expressing Nanoparticle Platform (TULEP) for mRNA delivery, whose properties can be readily tuned for optimal expression in hypoxic environments. Briefly, our study begins with the synthesis and characterization of a novel amino acrylate polymer that can be effectively complexed with mRNA payloads into TULEPs. We study the efficacy and mechanism of mRNA delivery using TULEP, including analysis of the cellular association, endocytosis mechanisms, endosomal escape, and protein expression in a lung cell line. We then evaluate TULEP under hypoxic conditions and address hypoxia-related deficits in efficacy by making our system tunable with adenosine triphosphate (ATP). Finally, we conclude our study with an in vivo analysis of mRNA expression, biodistribution, and tolerability of the TULEP platform in mice. In presenting these data, we hope that our work highlights the utility of TULEPs for tunable and effective mRNA delivery while more broadly highlighting the utility of considering oxygen levels when developing mRNA delivery platforms.


Asunto(s)
Pulmón , ARN Mensajero , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/administración & dosificación , Pulmón/metabolismo , Humanos , Animales , Ratones , Nanopartículas/química , Hipoxia de la Célula , Hipoxia/metabolismo
3.
J Am Chem Soc ; 146(22): 15264-15274, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38801413

RESUMEN

Organometallic-mediated chain growth polymerization of readily accessible chemical building blocks is responsible for important commercial and technological advances in polymer science, but the incorporation of heteroatoms into the polymer backbone through these mechanisms remains a challenge. Transition metal π-allyl complexes are well-developed organometallic intermediates for carbon-heteroatom bond formation in small-molecule catalysis yet remain underexplored in polymer science. Here, we developed a regioselective palladium-phosphoramidite-catalyzed chain-growth allylic amination polymerization of vinyl aziridines for the synthesis of novel nitrogen-rich polymers via ambiphilic π-allyl complexes. The polymerization accessed a linear microstructure with four carbons between each nitrogen, which is challenging to achieve through other chain-growth polymerization approaches. The highly regioselective allylic amination polymerization demonstrated the characteristics of a controlled polymerization and was able to achieve molar masses exceeding 20 kg mol-1 with low dispersities (D̵ < 1.3). The identification of the polymer structure and well-defined chain ends were supported by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and chain extension experiments demonstrate opportunities for building more complex materials from this method. A Hammett study was performed to understand the role of the catalyst and monomer structure on regioselectivity, and the data supported a mechanism wherein regioselectivity was primarily controlled by the ligand-metal complex. Postpolymerization desulfonylation provided access to a novel polyamine that demonstrated broad anticancer activity in vitro, which highlights the benefits of unlocking novel polyamine microstructures through regioselective chain-growth allylic amination polymerization.

4.
Small ; 20(23): e2307464, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38212275

RESUMEN

The transplantation of immunoisolated stem cell derived beta cell clusters (SC-ß) has the potential to restore physiological glycemic control in patients with type I diabetes. This strategy is attractive as it uses a renewable ß-cell source without the need for systemic immune suppression. SC-ß cells have been shown to reverse diabetes in immune compromised mice when transplanted as ≈300 µm diameter clusters into sites where they can become revascularized. However, immunoisolated SC-ß clusters are not directly revascularized and rely on slower diffusion of nutrients through a membrane. It is hypothesized that smaller SC-ß cell clusters (≈150 µm diameter), more similar to islets, will perform better within immunoisolation devices due to enhanced mass transport. To test this, SC-ß cells are resized into small clusters, encapsulated in alginate spheres, and coated with a biocompatible A10 polycation coating that resists fibrosis. After transplantation into diabetic immune competent C57BL/6 mice, the "resized" SC-ß cells plus the A10 biocompatible polycation coating induced long-term euglycemia in the mice (6 months). After retrieval, the resized A10 SC-ß cells exhibited the least amount of fibrosis and enhanced markers of ß-cell maturation. The utilization of small SC-ß cell clusters within immunoprotection devices may improve clinical translation in the future.


Asunto(s)
Células Secretoras de Insulina , Animales , Humanos , Células Secretoras de Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Diabetes Mellitus Experimental , Células Madre/citología , Células Madre/metabolismo , Diabetes Mellitus Tipo 1/terapia
5.
Mol Pharm ; 21(2): 393-409, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38189262

RESUMEN

Female reproductive health has traditionally been an underrepresented area of research in the drug delivery sciences. This disparity is also seen in the emerging field of mRNA therapeutics, a class of medicines that promises to treat and prevent disease by upregulating protein expression in the body. Here, we review advances in mRNA therapies through the lens of improving female reproductive health. Specifically, we begin our review by discussing the fundamental structure and biochemical modifications associated with mRNA-based drugs. Then, we discuss various packaging technologies, including lipid nanoparticles, that can be utilized to protect and transport mRNA drugs to target cells in the body. Last, we conclude our review by discussing the usage of mRNA therapy for addressing pregnancy-related health and vaccination against sexually transmitted diseases in women. Of note, we also highlight relevant clinical trials using mRNA for female reproductive health while also providing their corresponding National Clinical Trial identifiers. In undertaking this review, our aim is to provide a fundamental background understanding of mRNA therapy and its usage to specifically address female health issues with an overarching goal of providing information toward addressing gender disparity in certain aspects of health research.


Asunto(s)
Salud Reproductiva , Enfermedades de Transmisión Sexual , Embarazo , Humanos , Femenino , ARN Mensajero/genética , Enfermedades de Transmisión Sexual/prevención & control
6.
J Am Chem Soc ; 145(36): 19800-19811, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37656876

RESUMEN

A central goal of chemical and drug delivery sciences is to maximize the therapeutic efficacy of a given drug at the lowest possible dose. Here, we report a generalizable strategy that can be utilized to improve the delivery of mRNA drugs using lipid nanoparticles (LNPs), the clinically approved chemistry platforms utilized in the Moderna and Pfizer/BioNTech COVID-19 vaccines. In brief, our strategy updates the chemistry of LNPs to incorporate adenosine triphosphate (ATP) alongside mRNA, a modification that results in upward of a 79-fold increase in LNP-delivered mRNA-encoded protein expression in vitro and a 24-fold increase in vivo when compared to parent mRNA LNP formulations that do not contain ATP. Notably, we find that our ATP co-delivery strategy increases LNP-delivered mRNA-encoded protein expression across eight different LNP chemistries and three different cell lines, under normoxia and hypoxia, and in a well-tolerated fashion. Notably, our strategy also improves the expression of mRNA encoding for intracellular and secreted proteins both in vitro and in vivo, highlighting the utility of leveraging ATP co-delivery within mRNA LNPs as a means to increase protein expression. In developing this strategy, we hope that we have provided a simple yet powerful approach to improving mRNA LNPs that may one day be useful in developing therapies for human disease.


Asunto(s)
Adenosina Trifosfato , COVID-19 , Humanos , Vacunas contra la COVID-19 , ARN Mensajero/genética
7.
J Am Chem Soc ; 145(20): 11375-11386, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37184377

RESUMEN

Hypoxia is a common hallmark of human disease that is characterized by abnormally low oxygen levels in the body. While the effects of hypoxia on many small molecule-based drugs are known, its effects on several classes of next-generation medications including messenger RNA therapies warrant further study. Here, we provide an efficacy- and mechanism-driven study that details how hypoxia impacts the cellular response to mRNA therapies delivered using 4 different chemistries of lipid nanoparticles (LNPs, the frontrunner class of drug delivery vehicles for translational mRNA therapy utilized in the Moderna and Pfizer/BioNTech COVID-19 vaccines). Specifically, our work provides a comparative analysis as to how various states of oxygenation impact LNP-delivered mRNA expression, cellular association, endosomal escape, and intracellular ATP concentrations following treatment with 4 different LNPs across 3 different cell lines. In brief, we first identify that hypoxic cells express less LNP-delivered mRNA into protein than normoxic cells. Next, we identify generalizable cellular reoxygenation protocols that can reverse the negative effects that hypoxia imparts on LNP-delivered mRNA expression. Finally, mechanistic studies that utilize fluorescence-activated cell sorting, confocal microscopy, and enzyme inhibition reveal that decreases in mRNA expression correlate with decreases in intracellular ATP (rather than with differences in mRNA LNP uptake pathways). In presenting this data, we hope that our work provides a comprehensive efficacy and mechanism-driven study that explores the impact of differential oxygenation on LNP-delivered mRNA expression while simultaneously establishing fundamental criteria that may one day be useful for the development of mRNA drugs to treat hypoxia-associated disease.


Asunto(s)
COVID-19 , Nanopartículas , Humanos , Lípidos , ARN Mensajero/genética , Vacunas contra la COVID-19 , Liposomas , Hipoxia , Adenosina Trifosfato , ARN Interferente Pequeño/genética
8.
Bioconjug Chem ; 34(7): 1177-1197, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37431859

RESUMEN

Short interfering RNAs (siRNA) are a powerful class of genetic medicines whose clinical translation can be hindered by their suboptimal delivery properties in vivo. Here, we provide a clinically focused overview that summarizes ongoing siRNA clinical trials from the perspective of innovations in nonviral delivery strategies. More specifically, our review begins by highlighting the delivery barriers and physiochemical properties of siRNA that make it challenging to deliver it in vivo. We then provide commentary on specific delivery strategies, including sequence modification, siRNA ligand conjugation, and nanoparticle and exosomal packaging, each of which can be used to control the delivery of siRNA therapies in living systems. Last, we provide a summary table of ongoing siRNA clinical trials which also highlights the indication of use, target, and National Clinical Trial (NCT) number associated with each entry. In writing this review, our work aims to highlight the key challenges and strategies for effective nonviral siRNA delivery in vivo, while simultaneously summarizing information on ongoing clinical trials for siRNA therapy in humans.


Asunto(s)
Nanopartículas , Humanos , ARN Interferente Pequeño , Nanopartículas/química
9.
MRS Bull ; 46(9): 832-839, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539057

RESUMEN

ABSTRACT: Nucleic acid therapeutics offer a new paradigm to rapidly respond to global health problems. The versatility of nucleic acids, especially in RNA therapies, provides the ability to tune levels of specific protein expression, achieving downregulation through short interfering RNA (siRNA) or upregulation by messenger RNA (mRNA) administration. Recent advances in the development of delivery vehicles, including nonviral nanoparticles are crucial to overcome the innate barriers to nucleic acid delivery. Toward this end, current clinical approaches have utilized mRNA and lipid nanoparticles (LNPs) to address the COVID-19 pandemic through novel vaccine strategies, producing efficacious vaccines within one year of sequencing the SARS-CoV-2 genome. Here, we review fundamental concepts required to achieve successful nucleic acid delivery, including the design of LNP systems optimized for mRNA vaccine applications.

10.
Nano Lett ; 20(6): 4264-4269, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32357299

RESUMEN

Despite tremendous interest in gene therapies, the systemic delivery of nucleic acids still faces substantial challenges. To successfully administer nucleic acids, one approach is to encapsulate them in lipid nanoparticles (LNPs). However, LNPs administered intravenously substantially accumulate in the liver where they are taken up by the reticuloendothelial system (RES). Here, we administer prior to the LNPs a liposome designed to transiently occupy liver cells, the Nanoprimer. This study demonstrates that the pretreatment of mice with the Nanoprimer decreases the LNPs' uptake by the RES. By accumulating rapidly in the liver cells, the Nanoprimer improves the bioavailability of the LNPs encapsulating human erythropoietin (hEPO) mRNA or factor VII (FVII) siRNA, leading respectively to more hEPO production (by 32%) or FVII silencing (by 49%). The use of the Nanoprimer offers a new strategy to improve the systemic delivery of RNA-based therapeutics.


Asunto(s)
Lípidos , Nanopartículas , ARN Mensajero , ARN Interferente Pequeño , Animales , Sistemas de Liberación de Medicamentos , Hepatocitos , Ratones , ARN Mensajero/genética , ARN Interferente Pequeño/genética
11.
Biomed Microdevices ; 21(2): 45, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30963297

RESUMEN

Developing strategies to deliver the required dose of therapeutics into target tissues and cell populations within the body is a principal aim of controlled release and drug delivery. Specifically, there is an interest in developing formulations that can achieve drug concentrations within the therapeutic window, for extended periods of time, with tunable release profiles, and with minimal complication and distress for the patient. To date, drug delivery systems have been developed to serve as depots, triggers, and carriers for therapeutics including small molecules, biologics, and cell-based therapies. Notably, the efficacy of these systems is intricately tied to the manner in which they are administered. For example, systemic and oral routes of administration are common, but both can result in rapid clearance from the organism. Towards this end, what formulation and administration route strategies are available to prolong the bioavailability of therapeutics? Here, we discuss historical and modern drug delivery systems, with the intention of exploring how properties including formulation, administration route and chemical structure influence the ability to achieve extended-release drug release profiles within the body.


Asunto(s)
Portadores de Fármacos/química , Polímeros/química , Animales , Preparaciones de Acción Retardada , Portadores de Fármacos/metabolismo , Composición de Medicamentos , Humanos , Oxidación-Reducción , Polímeros/metabolismo , Prótesis e Implantes
13.
Biomacromolecules ; 20(12): 4430-4436, 2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31682423

RESUMEN

The ability to engineer immune function has transformed modern medicine, highlighted by the success of vaccinations and recent efforts in cancer immunotherapy. Further directions in programming the immune system focus on the design of immunomodulatory biomaterials that can recruit, engage with, and program immune cells locally in vivo. Here, we synthesized shear-thinning and self-healing polymer-nanoparticle (PNP) hydrogels as a tunable and injectable biomaterial platform for local dendritic cell (DC) recruitment. PNP gels were formed from two populations of poly(ethylene glycol)-block-polylactide (PEG-b-PLA) NPs with the same diameter but different PEG brush length (2 or 5 kDa). PEG-b-PLA NPs with the longer PEG brush exhibited improved gel formation following self-assembly and faster recovery after shear-thinning. In all cases, model protein therapeutics were released via Fickian diffusion in vitro, and minor differences in the release rate between the gel formulations were observed. PNP hydrogels were loaded with the DC cytokine CCL21 and injected subcutaneously in a murine model. CCL21-loaded PNP hydrogels recruited DCs preferentially to the site of injection in vivo relative to non-CCL21-loaded hydrogels. Thus, PNP hydrogels comprise a simple and tunable platform biomaterial for in vivo immunomodulation following minimally invasive subcutaneous injection.


Asunto(s)
Quimiocina CCL21 , Células Dendríticas/inmunología , Hidrogeles , Lactatos , Nanopartículas/química , Polietilenglicoles , Animales , Quimiocina CCL21/química , Quimiocina CCL21/farmacología , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacología , Células Dendríticas/citología , Hidrogeles/química , Hidrogeles/farmacología , Inyecciones Subcutáneas , Lactatos/química , Lactatos/farmacología , Ratones , Polietilenglicoles/química , Polietilenglicoles/farmacología
14.
Nano Lett ; 18(10): 6449-6454, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30211557

RESUMEN

mRNA therapeutics hold great potential for treating a variety of diseases through protein-replacement, immunomodulation, and gene editing. However, much like siRNA therapy the majority of progress in mRNA delivery has been confined to the liver. Previously, we demonstrated that poly(ß-amino esters), a class of degradable polymers, are capable of systemic mRNA delivery to the lungs in mice when formulated into nanoparticles with poly(ethylene glycol)-lipid conjugates. Using experimental design, a statistical approach to optimization that reduces experimental burden, we demonstrate herein that these degradable polymer-lipid nanoparticles can be optimized in terms of polymer synthesis and nanoparticle formulation to achieve a multiple order-of-magnitude increase in potency. Furthermore, using genetically engineered Cre reporter mice, we demonstrate that mRNA is functionally delivered to both the lung endothelium and pulmonary immune cells, expanding the potential utility of these nanoparticles.


Asunto(s)
Endotelio/efectos de los fármacos , Pulmón/efectos de los fármacos , Nanopartículas/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , Animales , Endotelio/inmunología , Endotelio/patología , Técnicas de Transferencia de Gen , Humanos , Lípidos/administración & dosificación , Lípidos/química , Pulmón/inmunología , Pulmón/patología , Ratones , Nanopartículas/química , Polietilenglicoles/química , Polímeros/química , ARN Mensajero/química , ARN Mensajero/genética , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética
15.
Nano Lett ; 17(3): 1326-1335, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28273716

RESUMEN

The induction of a strong cytotoxic T cell response is an important prerequisite for successful immunotherapy against many viral diseases and tumors. Nucleotide vaccines, including mRNA vaccines with their intracellular antigen synthesis, have been shown to be potent activators of a cytotoxic immune response. The intracellular delivery of mRNA vaccines to the cytosol of antigen presenting immune cells is still not sufficiently well understood. Here, we report on the development of a lipid nanoparticle formulation for the delivery of mRNA vaccines to induce a cytotoxic CD 8 T cell response. We show transfection of dendritic cells, macrophages, and neutrophils. The efficacy of the vaccine was tested in an aggressive B16F10 melanoma model. We found a strong CD 8 T cell activation after a single immunization. Treatment of B16F10 melanoma tumors with lipid nanoparticles containing mRNA coding for the tumor-associated antigens gp100 and TRP2 resulted in tumor shrinkage and extended the overall survival of the treated mice. The immune response can be further increased by the incorporation of the adjuvant LPS. In conclusion, the lipid nanoparticle formulation presented here is a promising vector for mRNA vaccine delivery, one that is capable of inducing a strong cytotoxic T cell response. Further optimization, including the incorporation of different adjuvants, will likely enhance the potency of the vaccine.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/inmunología , Lípidos/química , Melanoma Experimental/terapia , Nanopartículas/química , ARN Mensajero/química , Animales , Linfocitos T CD8-positivos/patología , Vacunas contra el Cáncer/uso terapéutico , Citotoxicidad Inmunológica , Humanos , Inmunoterapia , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones Endogámicos C57BL , Ovalbúmina/genética , ARN Mensajero/administración & dosificación , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/uso terapéutico
16.
Angew Chem Int Ed Engl ; 57(49): 16026-16029, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30209869

RESUMEN

The development of new material platforms can improve our ability to study biological processes. Here, we developed a water-compatible variant of a click-like polymerization between alkynoates and secondary amines to form ß-aminoacrylate synthetic polyethylene glycol (PEG) based hydrogels. These materials are easy to access-PEG alkynoate was synthesized on a 100 gram scale and the amines were available commercially; these materials are also operationally simple to formulate-gel formation occurred upon simple mixing of precursor solutions without the need for initiators, catalysts, nor specialized equipment. Three-dimensional cell culture experiments also indicated cytocompatibility of these gels with >90 % viability retained in THP-1 and NIH/3T3 cells after 72 hours in culture. This hydrogel system therefore represents an alternative platform to other click and click-like hydrogels with improved accessibility and user-friendliness for biomaterials application.


Asunto(s)
Acrilatos/química , Materiales Biocompatibles/síntesis química , Hidrogeles/síntesis química , Materiales Biocompatibles/química , Humanos , Hidrogeles/química , Microscopía Confocal , Estructura Molecular , Polietilenglicoles/química , Polimerizacion , Células THP-1
17.
Angew Chem Int Ed Engl ; 57(41): 13582-13586, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30112821

RESUMEN

RNAs are a promising class of therapeutics given their ability to regulate protein concentrations at the cellular level. Developing safe and effective strategies to deliver RNAs remains important for realizing their full clinical potential. Here, we develop lipid nanoparticle formulations that can deliver short interfering RNAs (for gene silencing) or messenger RNAs (for gene upregulation). Specifically, we study how the tail length, tail geometry, and linker spacing in diketopiperazine lipid materials influences LNP potency with siRNAs and mRNAs. Eight lipid materials are synthesized, and 16 total formulations are screened for activity in vitro; the lead material is evaluated with mRNA for in vivo use and demonstrates luciferase protein expression in the spleen. In undertaking this approach, not only do we develop synthetic routes to delivery materials, but we also reveal structural criteria that could be useful for developing next-generation delivery materials for RNA therapeutics.


Asunto(s)
Lípidos/química , Nanopartículas/química , ARN Mensajero/administración & dosificación , ARN Interferente Pequeño/administración & dosificación
18.
J Am Chem Soc ; 138(3): 1057-64, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26726924

RESUMEN

The concise, enantioselective total syntheses of (+)-asperazine (1), (+)-iso-pestalazine A (2), and (+)-pestalazine A (3) have been achieved by the development of a late-stage C3-C8' Friedel-Crafts union of polycyclic diketopiperazines. Our modular strategy enables the union of complex polycyclic diketopiperazines in virtually their final forms, thus providing rapid and highly convergent assembly at the challenging quaternary stereocenter of these dimeric alkaloids. The significance of this carbon-carbon bond formation can be gauged by the manifold constraints that were efficiently overcome, namely the substantial steric crowding at both reactive sites, the nucleophilic addition of C8' over N1' to the C3 carbocation, and the multitude of reactivity posed by the use of complex diketopiperazine fragments in the coupling event. The success of the indoline π-nucleophile that evolved through our studies is notable given the paucity of competing reaction pathways observed in the presence of the highly reactive C3 carbocation generated. This first total synthesis of (+)-pestalazine A also allowed us to revise the molecular structure for this natural alkaloid.


Asunto(s)
Dicetopiperazinas/química , Dicetopiperazinas/síntesis química , Alcaloides Indólicos/química , Alcaloides Indólicos/síntesis química , Indoles/síntesis química , Piperazinas/síntesis química , Indoles/química , Conformación Molecular , Piperazinas/química , Estereoisomerismo
19.
Nano Lett ; 15(11): 7300-6, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26469188

RESUMEN

Intracellular delivery of messenger RNA (mRNA) has the potential to induce protein production for many therapeutic applications. Although lipid nanoparticles have shown considerable promise for the delivery of small interfering RNAs (siRNA), their utility as agents for mRNA delivery has only recently been investigated. The most common siRNA formulations contain four components: an amine-containing lipid or lipid-like material, phospholipid, cholesterol, and lipid-anchored polyethylene glycol, the relative ratios of which can have profound effects on the formulation potency. Here, we develop a generalized strategy to optimize lipid nanoparticle formulations for mRNA delivery to the liver in vivo using Design of Experiment (DOE) methodologies including Definitive Screening and Fractional Factorial Designs. By simultaneously varying lipid ratios and structures, we developed an optimized formulation which increased the potency of erythropoietin-mRNA-loaded C12-200 lipid nanoparticles 7-fold relative to formulations previously used for siRNA delivery. Key features of this optimized formulation were the incorporation of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and increased ionizable lipid:mRNA weight ratios. Interestingly, the optimized lipid nanoparticle formulation did not improve siRNA delivery, indicating differences in optimized formulation parameter design spaces for siRNA and mRNA. We believe the general method described here can accelerate in vivo screening and optimization of nanoparticle formulations with large multidimensional design spaces.


Asunto(s)
Técnicas de Transferencia de Gen , Lípidos/química , Nanopartículas/química , ARN Mensajero/administración & dosificación , Línea Celular Tumoral , Humanos , Lípidos/administración & dosificación , Liposomas/administración & dosificación , Liposomas/química , Hígado/efectos de los fármacos , Nanopartículas/administración & dosificación , Fosfatidiletanolaminas/administración & dosificación , Fosfatidiletanolaminas/química , Polietilenglicoles/química , ARN Mensajero/química , Transfección
20.
Angew Chem Int Ed Engl ; 55(44): 13808-13812, 2016 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-27690187

RESUMEN

Therapeutic nucleic acids hold great promise for the treatment of disease but require vectors for safe and effective delivery. Synthetic nanoparticle vectors composed of poly(ß-amino esters) (PBAEs) and nucleic acids have previously demonstrated potential utility for local delivery applications. To expand this potential utility to include systemic delivery of mRNA, hybrid polymer-lipid nanoformulations for systemic delivery to the lungs were developed. Through coformulation of PBAEs with lipid-polyethylene glycol (PEG), mRNA formulations were developed with increased serum stability and increased in vitro potency. The formulations were capable of functional delivery of mRNA to the lungs after intravenous administration in mice. To our knowledge, this is the first report of the systemic administration of mRNA for delivery to the lungs using degradable polymer-lipid nanoparticles.


Asunto(s)
Lípidos/química , Pulmón/química , Nanopartículas/química , Polímeros/química , ARN Mensajero/química , Administración Intravenosa , Animales , Ratones , Estructura Molecular , Tamaño de la Partícula , Polímeros/administración & dosificación , ARN Mensajero/administración & dosificación , ARN Mensajero/síntesis química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA