Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(9): 1985-2001.e19, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37075754

RESUMEN

Aneuploidy, the presence of chromosome gains or losses, is a hallmark of cancer. Here, we describe KaryoCreate (karyotype CRISPR-engineered aneuploidy technology), a system that enables the generation of chromosome-specific aneuploidies by co-expression of an sgRNA targeting chromosome-specific CENPA-binding ɑ-satellite repeats together with dCas9 fused to mutant KNL1. We design unique and highly specific sgRNAs for 19 of the 24 chromosomes. Expression of these constructs leads to missegregation and induction of gains or losses of the targeted chromosome in cellular progeny, with an average efficiency of 8% for gains and 12% for losses (up to 20%) validated across 10 chromosomes. Using KaryoCreate in colon epithelial cells, we show that chromosome 18q loss, frequent in gastrointestinal cancers, promotes resistance to TGF-ß, likely due to synergistic hemizygous deletion of multiple genes. Altogether, we describe an innovative technology to create and study chromosome missegregation and aneuploidy in the context of cancer and beyond.


Asunto(s)
Centrómero , Técnicas Genéticas , Humanos , Aneuploidia , Centrómero/genética , Deleción Cromosómica , Neoplasias/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas
2.
Cell ; 186(18): 3921-3944.e25, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37582357

RESUMEN

Cancer driver events refer to key genetic aberrations that drive oncogenesis; however, their exact molecular mechanisms remain insufficiently understood. Here, our multi-omics pan-cancer analysis uncovers insights into the impacts of cancer drivers by identifying their significant cis-effects and distal trans-effects quantified at the RNA, protein, and phosphoprotein levels. Salient observations include the association of point mutations and copy-number alterations with the rewiring of protein interaction networks, and notably, most cancer genes converge toward similar molecular states denoted by sequence-based kinase activity profiles. A correlation between predicted neoantigen burden and measured T cell infiltration suggests potential vulnerabilities for immunotherapies. Patterns of cancer hallmarks vary by polygenic protein abundance ranging from uniform to heterogeneous. Overall, our work demonstrates the value of comprehensive proteogenomics in understanding the functional states of oncogenic drivers and their links to cancer development, surpassing the limitations of studying individual cancer types.


Asunto(s)
Neoplasias , Proteogenómica , Humanos , Neoplasias/genética , Oncogenes , Transformación Celular Neoplásica/genética , Variaciones en el Número de Copia de ADN
3.
Cell ; 186(16): 3476-3498.e35, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541199

RESUMEN

To improve the understanding of chemo-refractory high-grade serous ovarian cancers (HGSOCs), we characterized the proteogenomic landscape of 242 (refractory and sensitive) HGSOCs, representing one discovery and two validation cohorts across two biospecimen types (formalin-fixed paraffin-embedded and frozen). We identified a 64-protein signature that predicts with high specificity a subset of HGSOCs refractory to initial platinum-based therapy and is validated in two independent patient cohorts. We detected significant association between lack of Ch17 loss of heterozygosity (LOH) and chemo-refractoriness. Based on pathway protein expression, we identified 5 clusters of HGSOC, which validated across two independent patient cohorts and patient-derived xenograft (PDX) models. These clusters may represent different mechanisms of refractoriness and implicate putative therapeutic vulnerabilities.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Proteogenómica , Femenino , Humanos , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética
4.
Cell ; 184(19): 5031-5052.e26, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34534465

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor patient survival. Toward understanding the underlying molecular alterations that drive PDAC oncogenesis, we conducted comprehensive proteogenomic analysis of 140 pancreatic cancers, 67 normal adjacent tissues, and 9 normal pancreatic ductal tissues. Proteomic, phosphoproteomic, and glycoproteomic analyses were used to characterize proteins and their modifications. In addition, whole-genome sequencing, whole-exome sequencing, methylation, RNA sequencing (RNA-seq), and microRNA sequencing (miRNA-seq) were performed on the same tissues to facilitate an integrated proteogenomic analysis and determine the impact of genomic alterations on protein expression, signaling pathways, and post-translational modifications. To ensure robust downstream analyses, tumor neoplastic cellularity was assessed via multiple orthogonal strategies using molecular features and verified via pathological estimation of tumor cellularity based on histological review. This integrated proteogenomic characterization of PDAC will serve as a valuable resource for the community, paving the way for early detection and identification of novel therapeutic targets.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Proteogenómica , Adenocarcinoma/diagnóstico , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Carcinoma Ductal Pancreático/diagnóstico , Estudios de Cohortes , Células Endoteliales/metabolismo , Epigénesis Genética , Femenino , Dosificación de Gen , Genoma Humano , Glucólisis , Glicoproteínas/biosíntesis , Humanos , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Neoplasias Pancreáticas/diagnóstico , Fenotipo , Fosfoproteínas/metabolismo , Fosforilación , Pronóstico , Proteínas Quinasas/metabolismo , Proteoma/metabolismo , Especificidad por Sustrato , Transcriptoma/genética
5.
Cell ; 183(5): 1436-1456.e31, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33212010

RESUMEN

The integration of mass spectrometry-based proteomics with next-generation DNA and RNA sequencing profiles tumors more comprehensively. Here this "proteogenomics" approach was applied to 122 treatment-naive primary breast cancers accrued to preserve post-translational modifications, including protein phosphorylation and acetylation. Proteogenomics challenged standard breast cancer diagnoses, provided detailed analysis of the ERBB2 amplicon, defined tumor subsets that could benefit from immune checkpoint therapy, and allowed more accurate assessment of Rb status for prediction of CDK4/6 inhibitor responsiveness. Phosphoproteomics profiles uncovered novel associations between tumor suppressor loss and targetable kinases. Acetylproteome analysis highlighted acetylation on key nuclear proteins involved in the DNA damage response and revealed cross-talk between cytoplasmic and mitochondrial acetylation and metabolism. Our results underscore the potential of proteogenomics for clinical investigation of breast cancer through more accurate annotation of targetable pathways and biological features of this remarkably heterogeneous malignancy.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis/genética , Carcinogénesis/patología , Terapia Molecular Dirigida , Proteogenómica , Desaminasas APOBEC/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/terapia , Estudios de Cohortes , Daño del ADN , Reparación del ADN , Femenino , Humanos , Inmunoterapia , Metabolómica , Persona de Mediana Edad , Mutagénesis/genética , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Receptor ErbB-2/metabolismo , Proteína de Retinoblastoma/metabolismo , Microambiente Tumoral/inmunología
7.
Mol Cell ; 84(7): 1224-1242.e13, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38458201

RESUMEN

Although mismatch repair (MMR) is essential for correcting DNA replication errors, it can also recognize other lesions, such as oxidized bases. In G0 and G1, MMR is kept in check through unknown mechanisms as it is error-prone during these cell cycle phases. We show that in mammalian cells, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins inhibit the proteasomal degradation of p21, which competes with MMR proteins for binding to PCNA, thereby inhibiting MMR. The ability of D-type cyclins to limit MMR is CDK4- and CDK6-independent and is conserved in G0 and G1. At the G1/S transition, the timely, cullin-RING ubiquitin ligase (CRL)-dependent degradation of D-type cyclins and p21 enables MMR activity to efficiently repair DNA replication errors. Persistent expression of D-type cyclins during S-phase inhibits the binding of MMR proteins to PCNA, increases the mutational burden, and promotes microsatellite instability.


Asunto(s)
Ciclinas , Reparación de la Incompatibilidad de ADN , Animales , Ciclinas/genética , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Interfase , Mamíferos/metabolismo
8.
Cell ; 166(3): 755-765, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27372738

RESUMEN

To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass-spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSCs). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease, such as how different copy-number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, and the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC. VIDEO ABSTRACT.


Asunto(s)
Proteínas de Neoplasias/genética , Neoplasias Quísticas, Mucinosas y Serosas/genética , Neoplasias Ováricas/genética , Proteoma , Acetilación , Inestabilidad Cromosómica , Reparación del ADN , ADN de Neoplasias , Femenino , Dosificación de Gen , Humanos , Espectrometría de Masas , Fosfoproteínas/genética , Procesamiento Proteico-Postraduccional , Análisis de Supervivencia
9.
Cell ; 163(3): 534-5, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26496595

RESUMEN

LINE retrotransposons actively shape mammalian genomes. Denli et al. reveal a new open reading frame, ORF0, on the antisense strand of human LINE-1 encoding a small regulatory protein. This finding may represent the birth of an emerging retrotransposon gene that can adopt various fates, as it can be fused to adjacent host sequences.


Asunto(s)
Pan troglodytes/genética , Retroelementos , Animales , Humanos
10.
Mol Cell ; 81(1): 153-165.e7, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33333016

RESUMEN

Cellular processes are largely carried out by macromolecular assemblies, most of which are dynamic, having components that are in constant flux. One such assembly is the nuclear pore complex (NPC), an ∼50 MDa assembly comprised of ∼30 different proteins called Nups that mediates selective macromolecular transport between the nucleus and cytoplasm. We developed a proteomics method to provide a comprehensive picture of the yeast NPC component dynamics. We discovered that, although all Nups display uniformly slow turnover, their exchange rates vary considerably. Surprisingly, this exchange rate was relatively unrelated to each Nup's position, accessibility, or role in transport but correlated with its structural role; scaffold-forming Nups exchange slowly, whereas flexible connector Nups threading throughout the NPC architecture exchange more rapidly. Targeted perturbations in the NPC structure revealed a dynamic resilience to damage. Our approach opens a new window into macromolecular assembly dynamics.


Asunto(s)
Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
11.
Nature ; 596(7870): 43-53, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34349292

RESUMEN

The genomes of virtually all organisms contain repetitive sequences that are generated by the activity of transposable elements (transposons). Transposons are mobile genetic elements that can move from one genomic location to another; in this process, they amplify and increase their presence in genomes, sometimes to very high copy numbers. In this Review we discuss new evidence and ideas that the activity of retrotransposons, a major subgroup of transposons overall, influences and even promotes the process of ageing and age-related diseases in complex metazoan organisms, including humans. Retrotransposons have been coevolving with their host genomes since the dawn of life. This relationship has been largely competitive, and transposons have earned epithets such as 'junk DNA' and 'molecular parasites'. Much of our knowledge of the evolution of retrotransposons reflects their activity in the germline and is evident from genome sequence data. Recent research has provided a wealth of information on the activity of retrotransposons in somatic tissues during an individual lifespan, the molecular mechanisms that underlie this activity, and the manner in which these processes intersect with our own physiology, health and well-being.


Asunto(s)
Envejecimiento/genética , Envejecimiento/patología , Enfermedad/genética , Retroelementos/genética , Animales , Daño del ADN , Silenciador del Gen , Genoma Humano/genética , Genómica , Humanos , Inmunidad Innata
12.
Nature ; 592(7856): 789-793, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33854235

RESUMEN

D-type cyclins are central regulators of the cell division cycle and are among the most frequently deregulated therapeutic targets in human cancer1, but the mechanisms that regulate their turnover are still being debated2,3. Here, by combining biochemical and genetics studies in somatic cells, we identify CRL4AMBRA1 (also known as CRL4DCAF3) as the ubiquitin ligase that targets all three D-type cyclins for degradation. During development, loss of Ambra1 induces the accumulation of D-type cyclins and retinoblastoma (RB) hyperphosphorylation and hyperproliferation, and results in defects of the nervous system that are reduced by treating pregnant mice with the FDA-approved CDK4 and CDK6 (CDK4/6) inhibitor abemaciclib. Moreover, AMBRA1 acts as a tumour suppressor in mouse models and low AMBRA1 mRNA levels are predictive of poor survival in cancer patients. Cancer hotspot mutations in D-type cyclins abrogate their binding to AMBRA1 and induce their stabilization. Finally, a whole-genome, CRISPR-Cas9 screen identified AMBRA1 as a regulator of the response to CDK4/6 inhibition. Loss of AMBRA1 reduces sensitivity to CDK4/6 inhibitors by promoting the formation of complexes of D-type cyclins with CDK2. Collectively, our results reveal the molecular mechanism that controls the stability of D-type cyclins during cell-cycle progression, in development and in human cancer, and implicate AMBRA1 as a critical regulator of the RB pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , División Celular , Ciclina D1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Sistemas CRISPR-Cas , Ciclina D2/metabolismo , Ciclina D3/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Femenino , Técnicas de Inactivación de Genes , Genes Supresores de Tumor , Células HCT116 , Células HEK293 , Humanos , Masculino , Ratones , Neoplasias/genética , Ubiquitina/metabolismo
13.
Mol Cell Proteomics ; 22(8): 100596, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37394063

RESUMEN

Kinases are key players in cancer-relevant pathways and are the targets of many successful precision cancer therapies. Phosphoproteomics is a powerful approach to study kinase activity and has been used increasingly for the characterization of tumor samples leading to the identification of novel chemotherapeutic targets and biomarkers. Finding co-regulated phosphorylation sites which represent potential kinase-substrate sets or members of the same signaling pathway allows us to harness these data to identify clinically relevant and targetable alterations in signaling cascades. Unfortunately, studies have found that databases of co-regulated phosphorylation sites are only experimentally supported in a small number of substrate sets. To address the inherent challenge of defining co-regulated phosphorylation modules relevant to a given dataset, we developed PhosphoDisco, a toolkit for determining co-regulated phosphorylation modules. We applied this approach to tandem mass spectrometry based phosphoproteomic data for breast and non-small cell lung cancer and identified canonical as well as putative new phosphorylation site modules. Our analysis identified several interesting modules in each cohort. Among these was a new cell cycle checkpoint module enriched in basal breast cancer samples and a module of PRKC isozymes putatively co-regulated by CDK12 in lung cancer. We demonstrate that modules defined by PhosphoDisco can be used to further personalized cancer treatment strategies by establishing active signaling pathways in a given patient tumor or set of tumors, and in providing new ways to classify tumors based on signaling activity.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Fosforilación , Transducción de Señal , Espectrometría de Masas en Tándem
14.
Nucleic Acids Res ; 51(5): 2033-2045, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36744437

RESUMEN

LINE-1 retrotransposons are sequences capable of copying themselves to new genomic loci via an RNA intermediate. New studies implicate LINE-1 in a range of diseases, especially in the context of aging, but without an accurate understanding of where and when LINE-1 is expressed, a full accounting of its role in health and disease is not possible. We therefore developed a method-5' scL1seq-that makes use of a widely available library preparation method (10x Genomics 5' single cell RNA-seq) to measure LINE-1 expression in tens of thousands of single cells. We recapitulated the known pattern of LINE-1 expression in tumors-present in cancer cells, absent from immune cells-and identified hitherto undescribed LINE-1 expression in human epithelial cells and mouse hippocampal neurons. In both cases, we saw a modest increase with age, supporting recent research connecting LINE-1 to age related diseases.


Asunto(s)
Neoplasias , Retroelementos , Humanos , Animales , Ratones , Retroelementos/genética , Análisis de Expresión Génica de una Sola Célula , Elementos de Nucleótido Esparcido Largo/genética , Neuronas
15.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35169076

RESUMEN

Retrotransposons are genomic DNA sequences that copy themselves to new genomic locations via RNA intermediates; LINE-1 is the only active and autonomous retrotransposon in the human genome. The mobility of LINE-1 is largely repressed in somatic tissues but is derepressed in many cancers, where LINE-1 retrotransposition is correlated with p53 mutation and copy number alteration (CNA). In cell lines, inducing LINE-1 expression can cause double-strand breaks (DSBs) and replication stress. Reanalyzing multiomic data from breast, ovarian, endometrial, and colon cancers, we confirmed correlations between LINE-1 expression, p53 mutation status, and CNA. We observed a consistent correlation between LINE-1 expression and the abundance of DNA replication complex components, indicating that LINE-1 may also induce replication stress in human tumors. In endometrial cancer, high-quality phosphoproteomic data allowed us to identify the DSB-induced ATM-MRN-SMC S phase checkpoint pathway as the primary DNA damage response (DDR) pathway associated with LINE-1 expression. Induction of LINE-1 expression in an in vitro model led to increased phosphorylation of MRN complex member RAD50, suggesting that LINE-1 directly activates this pathway.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Elementos de Nucleótido Esparcido Largo/genética , Proteína p53 Supresora de Tumor/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Proteínas de Unión al ADN/metabolismo , Bases de Datos Genéticas , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Elementos de Nucleótido Esparcido Largo/fisiología , Neoplasias/genética , Proteínas Nucleares/metabolismo , Proteínas/genética , Proteínas/metabolismo , Retroelementos/genética , Puntos de Control de la Fase S del Ciclo Celular/genética , Proteína p53 Supresora de Tumor/metabolismo
16.
Proc Natl Acad Sci U S A ; 119(31): e2123017119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35881802

RESUMEN

Staphylococcus aureus is an opportunistic pathogen and chief among bloodstream-infecting bacteria. S. aureus produces an array of human-specific virulence factors that may contribute to immune suppression. Here, we defined the response of primary human phagocytes following infection with S. aureus using RNA-sequencing (RNA-Seq). We found that the overall transcriptional response to S. aureus was weak both in the number of genes and in the magnitude of response. Using an ex vivo bacteremia model with fresh human blood, we uncovered that infection with S. aureus resulted in the down-regulation of genes related to innate immune response and cytokine and chemokine signaling. This muted transcriptional response was conserved across diverse S. aureus clones but absent in blood exposed to heat-killed S. aureus or blood infected with the less virulent staphylococcal species Staphylococcus epidermidis. Notably, this signature was also present in patients with S. aureus bacteremia. We identified the master regulator S. aureus exoprotein expression (SaeRS) and the SaeRS-regulated pore-forming toxins as key mediators of the transcriptional suppression. The S. aureus-mediated suppression of chemokine and cytokine transcription was reflected by circulating protein levels in the plasma. Wild-type S. aureus elicited a soluble milieu that was restrictive in the recruitment of human neutrophils compared with strains lacking saeRS. Thus, S. aureus blunts the inflammatory response resulting in impaired neutrophil recruitment, which could promote the survival of the pathogen during invasive infection.


Asunto(s)
Interacciones Huésped-Patógeno , Neutrófilos , Infecciones Estafilocócicas , Staphylococcus aureus , Bacteriemia/inmunología , Bacteriemia/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citocinas/metabolismo , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno/inmunología , Humanos , Neutrófilos/inmunología , Neutrófilos/microbiología , Proteínas Citotóxicas Formadoras de Poros/genética , Infecciones Estafilocócicas/sangre , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidad , Staphylococcus epidermidis/patogenicidad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
BMC Bioinformatics ; 25(1): 92, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429657

RESUMEN

BACKGROUND: In recent years, researchers have made significant strides in understanding the heterogeneity of breast cancer and its various subtypes. However, the wealth of genomic and proteomic data available today necessitates efficient frameworks, instruments, and computational tools for meaningful analysis. Despite its success as a prognostic tool, the PAM50 gene signature's reliance on many genes presents challenges in terms of cost and complexity. Consequently, there is a need for more efficient methods to classify breast cancer subtypes using a reduced gene set accurately. RESULTS: This study explores the potential of achieving precise breast cancer subtype categorization using a reduced gene set derived from the PAM50 gene signature. By employing a "Few-Shot Genes Selection" method, we randomly select smaller subsets from PAM50 and evaluate their performance using metrics and a linear model, specifically the Support Vector Machine (SVM) classifier. In addition, we aim to assess whether a more compact gene set can maintain performance while simplifying the classification process. Our findings demonstrate that certain reduced gene subsets can perform comparable or superior to the full PAM50 gene signature. CONCLUSIONS: The identified gene subsets, with 36 genes, have the potential to contribute to the development of more cost-effective and streamlined diagnostic tools in breast cancer research and clinical settings.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/diagnóstico , Biomarcadores de Tumor/genética , Proteómica , Perfilación de la Expresión Génica/métodos , Técnicas Genéticas
18.
Mol Cell ; 64(3): 507-519, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27773672

RESUMEN

SLBP (stem-loop binding protein) is a highly conserved factor necessary for the processing, translation, and degradation of H2AFX and canonical histone mRNAs. We identified the F-box protein cyclin F, a substrate recognition subunit of an SCF (Skp1-Cul1-F-box protein) complex, as the G2 ubiquitin ligase for SLBP. SLBP interacts with cyclin F via an atypical CY motif, and mutation of this motif prevents SLBP degradation in G2. Expression of an SLBP stable mutant results in increased loading of H2AFX mRNA onto polyribosomes, resulting in increased expression of H2A.X (encoded by H2AFX). Upon genotoxic stress in G2, high levels of H2A.X lead to persistent γH2A.X signaling, high levels of H2A.X phosphorylated on Tyr142, high levels of p53, and induction of apoptosis. We propose that cyclin F co-evolved with the appearance of stem-loops in vertebrate H2AFX mRNA to mediate SLBP degradation, thereby limiting H2A.X synthesis and cell death upon genotoxic stress.


Asunto(s)
Ciclinas/genética , Daño del ADN , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Histonas/genética , Proteínas Nucleares/genética , ARN Mensajero/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Secuencias de Aminoácidos , Animales , Apoptosis , Sitios de Unión , Línea Celular Tumoral , Ciclinas/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Ratones , Proteínas Nucleares/metabolismo , Fosforilación , Polirribosomas/genética , Polirribosomas/metabolismo , Unión Proteica , Proteolisis , ARN Mensajero/metabolismo , Ratas , Transducción de Señal , Xenopus laevis , Pez Cebra , Factores de Escisión y Poliadenilación de ARNm/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-38951360

RESUMEN

PURPOSE: Retrotransposons play important roles during early development when they are transiently de-repressed during epigenetic reprogramming. Long interspersed element-1 (L1), the only autonomous retrotransposon in humans, comprises 17% of the human genome. We applied the Single Cell Transposon Insertion Profiling by Sequencing (scTIPseq) to characterize and map L1 insertions in human embryos. METHODS: Sixteen cryopreserved, genetically tested, human blastocysts, were accessed from consenting couples undergoing IVF at NYU Langone Fertility Center. Additionally, four trios (father, mother, and embryos) were also evaluated. scTIPseq was applied to map L1 insertions in all samples, using L1 locations reported in the 1000 Genomes as controls. RESULTS: Twenty-nine unknown and unique insertions were observed in the sixteen embryos. Most were intergenic; no insertions were located in exons or immediately upstream of genes. The location or number of unknown insertions did not differ between euploid and aneuploid embryos, suggesting they are not merely markers of aneuploidy. Rather, scTIPseq provides novel information about sub-chromosomal structural variation in human embryos. Trio analyses showed a parental origin of all L1 insertions in embryos. CONCLUSION: Several studies have measured L1 expression at different stages of development in mice, but this study for the first time reports unknown insertions in human embryos that were inherited from one parent, confirming no de novo L1 insertions occurred in parental germline or during embryogenesis. Since one-third of euploid embryo transfers fail, future studies would be useful for understanding whether these sub-chromosomal genetic variants or de novo L1 insertions affect embryo developmental potential.

20.
J Proteome Res ; 22(11): 3625-3639, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37857377

RESUMEN

An accurate quantification of HLA class I gene expression is important in understanding the interplay with the tumor microenvironment of antitumor cytotoxic T cell activities. Because HLA-I sequences are highly variable, standard RNAseq and mass spectrometry-based quantification workflows using common genome and protein sequence references do not provide HLA-I allele specific quantifications. Here, we used personalized HLA-I nucleotide and protein reference sequences based on the subjects' HLA-I genotypes and surveyed tumor and adjacent normal samples from patients across nine cancer types. Mass spectrometry using data dependent acquisition data was validated to be sufficient to estimate HLA-A protein expression at the allele level. We found that HLA-I proteins were present in significantly higher levels in tumors compared to adjacent normal tissues from 41 to 63% of head and neck squamous cell carcinoma, uterine corpus endometrial carcinoma, and clear cell renal cell carcinoma patients, and this was driven by increased levels of HLA-I gene transcripts. Most immune cell types are universally enriched in HLA-I high tumors, while endothelial and neuronal cells showed divergent relationships with HLA-I. Pathway analysis revealed that tumor senescence and autophagy activity influence the level of HLA-I proteins in glioblastoma. Genes correlated to HLA-I protein expression are mostly the ones directly involved in HLA-I function in immune response and cell death, while glycosylation genes are exclusively co-expressed with HLA-I at the protein level.


Asunto(s)
Carcinoma de Células Renales , Carcinoma de Células Escamosas , Neoplasias Renales , Proteogenómica , Humanos , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/análisis , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Neoplasias Renales/patología , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA