Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Mol Cell ; 60(3): 475-86, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26593721

RESUMEN

The regulation of protein synthesis contributes to gene expression in both normal physiology and disease, yet kinetic investigations of the human translation mechanism are currently lacking. Using single-molecule fluorescence imaging methods, we have quantified the nature and timing of structural processes in human ribosomes during single-turnover and processive translation reactions. These measurements reveal that functional complexes exhibit dynamic behaviors and thermodynamic stabilities distinct from those observed for bacterial systems. Structurally defined sub-states of pre- and post-translocation complexes were sensitive to specific inhibitors of the eukaryotic ribosome, demonstrating the utility of this platform to probe drug mechanism. The application of three-color single-molecule fluorescence resonance energy transfer (smFRET) methods further revealed a long-distance allosteric coupling between distal tRNA binding sites within ribosomes bearing three tRNAs, which contributed to the rate of processive translation.


Asunto(s)
Biosíntesis de Proteínas , ARN de Transferencia/química , Ribosomas/química , Regulación Alostérica , Transferencia Resonante de Energía de Fluorescencia , Humanos , ARN de Transferencia/metabolismo , Ribosomas/metabolismo
2.
Proc Natl Acad Sci U S A ; 114(51): E10899-E10908, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29208708

RESUMEN

Aminoglycosides are chemically diverse, broad-spectrum antibiotics that target functional centers within the bacterial ribosome to impact all four principle stages (initiation, elongation, termination, and recycling) of the translation mechanism. The propensity of aminoglycosides to induce miscoding errors that suppress the termination of protein synthesis supports their potential as therapeutic interventions in human diseases associated with premature termination codons (PTCs). However, the sites of interaction of aminoglycosides with the eukaryotic ribosome and their modes of action in eukaryotic translation remain largely unexplored. Here, we use the combination of X-ray crystallography and single-molecule FRET analysis to reveal the interactions of distinct classes of aminoglycosides with the 80S eukaryotic ribosome. Crystal structures of the 80S ribosome in complex with paromomycin, geneticin (G418), gentamicin, and TC007, solved at 3.3- to 3.7-Å resolution, reveal multiple aminoglycoside-binding sites within the large and small subunits, wherein the 6'-hydroxyl substituent in ring I serves as a key determinant of binding to the canonical eukaryotic ribosomal decoding center. Multivalent binding interactions with the human ribosome are also evidenced through their capacity to affect large-scale conformational dynamics within the pretranslocation complex that contribute to multiple aspects of the translation mechanism. The distinct impacts of the aminoglycosides examined suggest that their chemical composition and distinct modes of interaction with the ribosome influence PTC read-through efficiency. These findings provide structural and functional insights into aminoglycoside-induced impacts on the eukaryotic ribosome and implicate pleiotropic mechanisms of action beyond decoding.


Asunto(s)
Aminoglicósidos/metabolismo , Eucariontes/efectos de los fármacos , Eucariontes/metabolismo , Ribosomas/metabolismo , Aminoglicósidos/química , Bacterias/genética , Bacterias/metabolismo , Sitios de Unión , Humanos , Modelos Moleculares , Conformación Molecular , Unión Proteica , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Ribosomas/química , Ribosomas/genética
3.
Mol Cell ; 36(5): 768-81, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-20005841

RESUMEN

Ribosomal processing requires a series of endo- and exonucleolytic steps for the production of mature ribosomes, of which most have been described. To ensure ribosome synthesis, 3' end formation of rRNA uses multiple nucleases acting in parallel; however, a similar parallel mechanism had not been described for 5' end maturation. Here, we identify Rrp17p as a previously unidentified 5'-3' exonuclease essential for ribosome biogenesis, functioning with Rat1p in a parallel processing pathway analogous to that of 3' end formation. Rrp17p is required for efficient exonuclease digestion of the mature 5' ends of 5.8S(S) and 25S rRNAs, contains a catalytic domain close to its N terminus, and is highly conserved among higher eukaryotes, being a member of a family of exonucleases. We show that Rrp17p binds late pre-60S ribosomes, accompanying them from the nucleolus to the nuclear periphery, and provide evidence for physical and functional links between late 60S subunit processing and export.


Asunto(s)
Exonucleasas/fisiología , Proteínas de la Membrana/genética , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/metabolismo , Ribosomas/metabolismo , Secuencia de Aminoácidos , Exonucleasas/genética , Exonucleasas/metabolismo , Exorribonucleasas/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
4.
J Biol Chem ; 289(34): 23917-27, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-24990941

RESUMEN

During protein synthesis, elongation factor-Tu (EF-Tu) bound to GTP chaperones the entry of aminoacyl-tRNA (aa-tRNA) into actively translating ribosomes. In so doing, EF-Tu increases the rate and fidelity of the translation mechanism. Recent evidence suggests that EF-Ts, the guanosine nucleotide exchange factor for EF-Tu, directly accelerates both the formation and dissociation of the EF-Tu-GTP-Phe-tRNA(Phe) ternary complex (Burnett, B. J., Altman, R. B., Ferrao, R., Alejo, J. L., Kaur, N., Kanji, J., and Blanchard, S. C. (2013) J. Biol. Chem. 288, 13917-13928). A central feature of this model is the existence of a quaternary complex of EF-Tu/Ts·GTP·aa-tRNA(aa). Here, through comparative investigations of phenylalanyl, methionyl, and arginyl ternary complexes, and the development of a strategy to monitor their formation and decay using fluorescence resonance energy transfer, we reveal the generality of this newly described EF-Ts function and the first direct evidence of the transient quaternary complex species. These findings suggest that EF-Ts may regulate ternary complex abundance in the cell through mechanisms that are distinct from its guanosine nucleotide exchange factor functions.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Guanosina Trifosfato/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , Factores de Elongación de Péptidos/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Modelos Moleculares , Factor Tu de Elongación Peptídica/química , Factores de Elongación de Péptidos/química , Aminoacil-ARN de Transferencia/química , Ribosomas/metabolismo
5.
Elife ; 112022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36264623

RESUMEN

Rapid and accurate mRNA translation requires efficient codon-dependent delivery of the correct aminoacyl-tRNA (aa-tRNA) to the ribosomal A site. In mammals, this fidelity-determining reaction is facilitated by the GTPase elongation factor-1 alpha (eEF1A), which escorts aa-tRNA as an eEF1A(GTP)-aa-tRNA ternary complex into the ribosome. The structurally unrelated cyclic peptides didemnin B and ternatin-4 bind to the eEF1A(GTP)-aa-tRNA ternary complex and inhibit translation but have different effects on protein synthesis in vitro and in vivo. Here, we employ single-molecule fluorescence imaging and cryogenic electron microscopy to determine how these natural products inhibit translational elongation on mammalian ribosomes. By binding to a common site on eEF1A, didemnin B and ternatin-4 trap eEF1A in an intermediate state of aa-tRNA selection, preventing eEF1A release and aa-tRNA accommodation on the ribosome. We also show that didemnin B and ternatin-4 exhibit distinct effects on the dynamics of aa-tRNA selection that inform on observed disparities in their inhibition efficacies and physiological impacts. These integrated findings underscore the value of dynamics measurements in assessing the mechanism of small-molecule inhibition and highlight potential of single-molecule methods to reveal how distinct natural products differentially impact the human translation mechanism.


Asunto(s)
Productos Biológicos , Aminoacil-ARN de Transferencia , Animales , Humanos , Productos Biológicos/metabolismo , Codón/metabolismo , Guanosina Trifosfato/metabolismo , Mamíferos/genética , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/metabolismo , Ribosomas/metabolismo , Aminoacil-ARN de Transferencia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA