Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 312
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 593(7858): 266-269, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33767447

RESUMEN

The SARS-CoV-2 lineage B.1.1.7, designated variant of concern (VOC) 202012/01 by Public Health England1, was first identified in the UK in late summer to early autumn 20202. Whole-genome SARS-CoV-2 sequence data collected from community-based diagnostic testing for COVID-19 show an extremely rapid expansion of the B.1.1.7 lineage during autumn 2020, suggesting that it has a selective advantage. Here we show that changes in VOC frequency inferred from genetic data correspond closely to changes inferred by S gene target failures (SGTF) in community-based diagnostic PCR testing. Analysis of trends in SGTF and non-SGTF case numbers in local areas across England shows that B.1.1.7 has higher transmissibility than non-VOC lineages, even if it has a different latent period or generation time. The SGTF data indicate a transient shift in the age composition of reported cases, with cases of B.1.1.7 including a larger share of under 20-year-olds than non-VOC cases. We estimated time-varying reproduction numbers for B.1.1.7 and co-circulating lineages using SGTF and genomic data. The best-supported models did not indicate a substantial difference in VOC transmissibility among different age groups, but all analyses agreed that B.1.1.7 has a substantial transmission advantage over other lineages, with a 50% to 100% higher reproduction number.


Asunto(s)
COVID-19/transmisión , COVID-19/virología , Filogenia , SARS-CoV-2/clasificación , SARS-CoV-2/patogenicidad , Adolescente , Adulto , Distribución por Edad , Anciano , Anciano de 80 o más Años , Número Básico de Reproducción , COVID-19/diagnóstico , COVID-19/epidemiología , Niño , Preescolar , Inglaterra/epidemiología , Evolución Molecular , Genoma Viral/genética , Humanos , Lactante , Recién Nacido , Persona de Mediana Edad , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/análisis , Glicoproteína de la Espiga del Coronavirus/genética , Factores de Tiempo , Adulto Joven
2.
Nature ; 584(7820): 257-261, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32512579

RESUMEN

Following the detection of the new coronavirus1 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its spread outside of China, Europe has experienced large epidemics of coronavirus disease 2019 (COVID-19). In response, many European countries have implemented non-pharmaceutical interventions, such as the closure of schools and national lockdowns. Here we study the effect of major interventions across 11 European countries for the period from the start of the COVID-19 epidemics in February 2020 until 4 May 2020, when lockdowns started to be lifted. Our model calculates backwards from observed deaths to estimate transmission that occurred several weeks previously, allowing for the time lag between infection and death. We use partial pooling of information between countries, with both individual and shared effects on the time-varying reproduction number (Rt). Pooling allows for more information to be used, helps to overcome idiosyncrasies in the data and enables more-timely estimates. Our model relies on fixed estimates of some epidemiological parameters (such as the infection fatality rate), does not include importation or subnational variation and assumes that changes in Rt are an immediate response to interventions rather than gradual changes in behaviour. Amidst the ongoing pandemic, we rely on death data that are incomplete, show systematic biases in reporting and are subject to future consolidation. We estimate that-for all of the countries we consider here-current interventions have been sufficient to drive Rt below 1 (probability Rt < 1.0 is greater than 99%) and achieve control of the epidemic. We estimate that across all 11 countries combined, between 12 and 15 million individuals were infected with SARS-CoV-2 up to 4 May 2020, representing between 3.2% and 4.0% of the population. Our results show that major non-pharmaceutical interventions-and lockdowns in particular-have had a large effect on reducing transmission. Continued intervention should be considered to keep transmission of SARS-CoV-2 under control.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , Número Básico de Reproducción , COVID-19 , Infecciones por Coronavirus/mortalidad , Infecciones por Coronavirus/transmisión , Europa (Continente)/epidemiología , Humanos , Neumonía Viral/mortalidad , Neumonía Viral/transmisión
3.
Nature ; 584(7821): 425-429, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32604404

RESUMEN

On 21 February 2020, a resident of the municipality of Vo', a small town near Padua (Italy), died of pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection1. This was the first coronavirus disease 19 (COVID-19)-related death detected in Italy since the detection of SARS-CoV-2 in the Chinese city of Wuhan, Hubei province2. In response, the regional authorities imposed the lockdown of the whole municipality for 14 days3. Here we collected information on the demography, clinical presentation, hospitalization, contact network and the presence of SARS-CoV-2 infection in nasopharyngeal swabs for 85.9% and 71.5% of the population of Vo' at two consecutive time points. From the first survey, which was conducted around the time the town lockdown started, we found a prevalence of infection of 2.6% (95% confidence interval (CI): 2.1-3.3%). From the second survey, which was conducted at the end of the lockdown, we found a prevalence of 1.2% (95% CI: 0.8-1.8%). Notably, 42.5% (95% CI: 31.5-54.6%) of the confirmed SARS-CoV-2 infections detected across the two surveys were asymptomatic (that is, did not have symptoms at the time of swab testing and did not develop symptoms afterwards). The mean serial interval was 7.2 days (95% CI: 5.9-9.6). We found no statistically significant difference in the viral load of symptomatic versus asymptomatic infections (P = 0.62 and 0.74 for E and RdRp genes, respectively, exact Wilcoxon-Mann-Whitney test). This study sheds light on the frequency of asymptomatic SARS-CoV-2 infection, their infectivity (as measured by the viral load) and provides insights into its transmission dynamics and the efficacy of the implemented control measures.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Brotes de Enfermedades/prevención & control , Pandemias/prevención & control , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Infecciones Asintomáticas/epidemiología , Betacoronavirus/enzimología , Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , COVID-19 , Niño , Preescolar , Proteínas de la Envoltura de Coronavirus , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , ARN Polimerasa Dependiente de ARN de Coronavirus , Brotes de Enfermedades/estadística & datos numéricos , Femenino , Humanos , Lactante , Recién Nacido , Italia/epidemiología , Masculino , Persona de Mediana Edad , Neumonía Viral/transmisión , Neumonía Viral/virología , Prevalencia , ARN Polimerasa Dependiente del ARN/genética , SARS-CoV-2 , Proteínas del Envoltorio Viral/genética , Carga Viral , Proteínas no Estructurales Virales/genética , Adulto Joven
4.
N Engl J Med ; 386(16): 1532-1546, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35249272

RESUMEN

BACKGROUND: A rapid increase in coronavirus disease 2019 (Covid-19) cases due to the omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 in highly vaccinated populations has aroused concerns about the effectiveness of current vaccines. METHODS: We used a test-negative case-control design to estimate vaccine effectiveness against symptomatic disease caused by the omicron and delta (B.1.617.2) variants in England. Vaccine effectiveness was calculated after primary immunization with two doses of BNT162b2 (Pfizer-BioNTech), ChAdOx1 nCoV-19 (AstraZeneca), or mRNA-1273 (Moderna) vaccine and after a booster dose of BNT162b2, ChAdOx1 nCoV-19, or mRNA-1273. RESULTS: Between November 27, 2021, and January 12, 2022, a total of 886,774 eligible persons infected with the omicron variant, 204,154 eligible persons infected with the delta variant, and 1,572,621 eligible test-negative controls were identified. At all time points investigated and for all combinations of primary course and booster vaccines, vaccine effectiveness against symptomatic disease was higher for the delta variant than for the omicron variant. No effect against the omicron variant was noted from 20 weeks after two ChAdOx1 nCoV-19 doses, whereas vaccine effectiveness after two BNT162b2 doses was 65.5% (95% confidence interval [CI], 63.9 to 67.0) at 2 to 4 weeks, dropping to 8.8% (95% CI, 7.0 to 10.5) at 25 or more weeks. Among ChAdOx1 nCoV-19 primary course recipients, vaccine effectiveness increased to 62.4% (95% CI, 61.8 to 63.0) at 2 to 4 weeks after a BNT162b2 booster before decreasing to 39.6% (95% CI, 38.0 to 41.1) at 10 or more weeks. Among BNT162b2 primary course recipients, vaccine effectiveness increased to 67.2% (95% CI, 66.5 to 67.8) at 2 to 4 weeks after a BNT162b2 booster before declining to 45.7% (95% CI, 44.7 to 46.7) at 10 or more weeks. Vaccine effectiveness after a ChAdOx1 nCoV-19 primary course increased to 70.1% (95% CI, 69.5 to 70.7) at 2 to 4 weeks after an mRNA-1273 booster and decreased to 60.9% (95% CI, 59.7 to 62.1) at 5 to 9 weeks. After a BNT162b2 primary course, the mRNA-1273 booster increased vaccine effectiveness to 73.9% (95% CI, 73.1 to 74.6) at 2 to 4 weeks; vaccine effectiveness fell to 64.4% (95% CI, 62.6 to 66.1) at 5 to 9 weeks. CONCLUSIONS: Primary immunization with two doses of ChAdOx1 nCoV-19 or BNT162b2 vaccine provided limited protection against symptomatic disease caused by the omicron variant. A BNT162b2 or mRNA-1273 booster after either the ChAdOx1 nCoV-19 or BNT162b2 primary course substantially increased protection, but that protection waned over time. (Funded by the U.K. Health Security Agency.).


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Eficacia de las Vacunas , Vacuna nCoV-2019 mRNA-1273/uso terapéutico , Vacuna BNT162/uso terapéutico , COVID-19/prevención & control , Vacunas contra la COVID-19/uso terapéutico , Estudios de Casos y Controles , ChAdOx1 nCoV-19/uso terapéutico , Humanos , Inmunización Secundaria/efectos adversos , SARS-CoV-2/genética
5.
PLoS Comput Biol ; 20(5): e1012141, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38805483

RESUMEN

Considerable spatial heterogeneity has been observed in COVID-19 transmission across administrative areas of England throughout the pandemic. This study investigates what drives these differences. We constructed a probabilistic case count model for 306 administrative areas of England across 95 weeks, fit using a Bayesian evidence synthesis framework. We incorporate the impact of acquired immunity, of spatial exportation of cases, and 16 spatially-varying socio-economic, socio-demographic, health, and mobility variables. Model comparison assesses the relative contributions of these respective mechanisms. We find that spatially-varying and time-varying differences in week-to-week transmission were definitively associated with differences in: time spent at home, variant-of-concern proportion, and adult social care funding. However, model comparison demonstrates that the impact of these terms is negligible compared to the role of spatial exportation between administrative areas. While these results confirm the impact of some, but not all, static measures of spatially-varying inequity in England, our work corroborates the finding that observed differences in disease transmission during the pandemic were predominantly driven by underlying epidemiological factors rather than aggregated metrics of demography and health inequity between areas. Further work is required to assess how health inequity more broadly contributes to these epidemiological factors.


Asunto(s)
Teorema de Bayes , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/transmisión , COVID-19/epidemiología , Inglaterra/epidemiología , Pandemias/estadística & datos numéricos , Factores Socioeconómicos , Disparidades en el Estado de Salud , Modelos Estadísticos
6.
PLoS Comput Biol ; 19(12): e1011662, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38055683

RESUMEN

Dengue virus (DENV) is a public health challenge across the tropics and subtropics. Currently, there is no licensed prophylactic or antiviral treatment for dengue. The novel DENV inhibitor JNJ-1802 can significantly reduce viral load in mice and non-human primates. Here, using a mechanistic viral kinetic model calibrated against viral RNA data from experimental in-vitro infection studies, we assess the in-vitro inhibitory effect of JNJ-1802 by characterising infection dynamics of two DENV-2 strains in the absence and presence of different JNJ-1802 concentrations. Viral RNA suppression to below the limit of detection was achieved at concentrations of >1.6 nM, with a median concentration exhibiting 50% of maximal inhibitory effect (IC50) of 1.23x10-02 nM and 1.28x10-02 nM for the DENV-2/RL and DENV-2/16681 strains, respectively. This work provides important insight into the in-vitro inhibitory effect of JNJ-1802 and presents a first step towards a modelling framework to support characterization of viral kinetics and drug effect across different host systems.


Asunto(s)
Virus del Dengue , Dengue , Animales , Ratones , ARN Viral/genética , Dengue/tratamiento farmacológico , Antivirales/farmacología , Replicación Viral
7.
Nature ; 559(7715): 490-497, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30046071

RESUMEN

Mosquito-borne diseases remain a major cause of morbidity and mortality across the tropical regions. Despite much progress in the control of malaria, malaria-associated morbidity remains high, whereas arboviruses-most notably dengue-are responsible for a rising burden of disease, even in middle-income countries that have almost completely eliminated malaria. Here I discuss how new interventions offer the promise of considerable future reductions in disease burden. However, I emphasize that intervention programmes need to be underpinned by rigorous trials and quantitative epidemiological analyses. Such analyses suggest that the long-term goal of elimination is more feasible for dengue than for malaria, even if malaria elimination would offer greater overall health benefit to the public.


Asunto(s)
Dengue/prevención & control , Malaria/prevención & control , Control de Mosquitos/métodos , Animales , Dengue/mortalidad , Dengue/transmisión , Tecnología de Genética Dirigida , Objetivos , Humanos , Incidencia , Malaria/mortalidad , Malaria/transmisión , Mosquitos Vectores/genética , Mosquitos Vectores/microbiología , Control Biológico de Vectores/métodos , Vacunas , Wolbachia/patogenicidad
8.
PLoS Med ; 20(11): e1004195, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38016000

RESUMEN

BACKGROUND: Vaccines have reduced severe disease and death from Coronavirus Disease 2019 (COVID-19). However, with evidence of waning efficacy coupled with continued evolution of the virus, health programmes need to evaluate the requirement for regular booster doses, considering their impact and cost-effectiveness in the face of ongoing transmission and substantial infection-induced immunity. METHODS AND FINDINGS: We developed a combined immunological-transmission model parameterised with data on transmissibility, severity, and vaccine effectiveness. We simulated Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) transmission and vaccine rollout in characteristic global settings with different population age-structures, contact patterns, health system capacities, prior transmission, and vaccine uptake. We quantified the impact of future vaccine booster dose strategies with both ancestral and variant-adapted vaccine products, while considering the potential future emergence of new variants with modified transmission, immune escape, and severity properties. We found that regular boosting of the oldest age group (75+) is an efficient strategy, although large numbers of hospitalisations and deaths could be averted by extending vaccination to younger age groups. In countries with low vaccine coverage and high infection-derived immunity, boosting older at-risk groups was more effective than continuing primary vaccination into younger ages in our model. Our study is limited by uncertainty in key parameters, including the long-term durability of vaccine and infection-induced immunity as well as uncertainty in the future evolution of the virus. CONCLUSIONS: Our modelling suggests that regular boosting of the high-risk population remains an important tool to reduce morbidity and mortality from current and future SARS-CoV-2 variants. Our results suggest that focusing vaccination in the highest-risk cohorts will be the most efficient (and hence cost-effective) strategy to reduce morbidity and mortality.


Asunto(s)
COVID-19 , Vacunas , Humanos , SARS-CoV-2 , COVID-19/prevención & control , Vacunación
9.
Lancet ; 399(10332): 1303-1312, 2022 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-35305296

RESUMEN

BACKGROUND: The omicron variant (B.1.1.529) of SARS-CoV-2 has demonstrated partial vaccine escape and high transmissibility, with early studies indicating lower severity of infection than that of the delta variant (B.1.617.2). We aimed to better characterise omicron severity relative to delta by assessing the relative risk of hospital attendance, hospital admission, or death in a large national cohort. METHODS: Individual-level data on laboratory-confirmed COVID-19 cases resident in England between Nov 29, 2021, and Jan 9, 2022, were linked to routine datasets on vaccination status, hospital attendance and admission, and mortality. The relative risk of hospital attendance or admission within 14 days, or death within 28 days after confirmed infection, was estimated using proportional hazards regression. Analyses were stratified by test date, 10-year age band, ethnicity, residential region, and vaccination status, and were further adjusted for sex, index of multiple deprivation decile, evidence of a previous infection, and year of age within each age band. A secondary analysis estimated variant-specific and vaccine-specific vaccine effectiveness and the intrinsic relative severity of omicron infection compared with delta (ie, the relative risk in unvaccinated cases). FINDINGS: The adjusted hazard ratio (HR) of hospital attendance (not necessarily resulting in admission) with omicron compared with delta was 0·56 (95% CI 0·54-0·58); for hospital admission and death, HR estimates were 0·41 (0·39-0·43) and 0·31 (0·26-0·37), respectively. Omicron versus delta HR estimates varied with age for all endpoints examined. The adjusted HR for hospital admission was 1·10 (0·85-1·42) in those younger than 10 years, decreasing to 0·25 (0·21-0·30) in 60-69-year-olds, and then increasing to 0·47 (0·40-0·56) in those aged at least 80 years. For both variants, past infection gave some protection against death both in vaccinated (HR 0·47 [0·32-0·68]) and unvaccinated (0·18 [0·06-0·57]) cases. In vaccinated cases, past infection offered no additional protection against hospital admission beyond that provided by vaccination (HR 0·96 [0·88-1·04]); however, for unvaccinated cases, past infection gave moderate protection (HR 0·55 [0·48-0·63]). Omicron versus delta HR estimates were lower for hospital admission (0·30 [0·28-0·32]) in unvaccinated cases than the corresponding HR estimated for all cases in the primary analysis. Booster vaccination with an mRNA vaccine was highly protective against hospitalisation and death in omicron cases (HR for hospital admission 8-11 weeks post-booster vs unvaccinated: 0·22 [0·20-0·24]), with the protection afforded after a booster not being affected by the vaccine used for doses 1 and 2. INTERPRETATION: The risk of severe outcomes following SARS-CoV-2 infection is substantially lower for omicron than for delta, with higher reductions for more severe endpoints and significant variation with age. Underlying the observed risks is a larger reduction in intrinsic severity (in unvaccinated individuals) counterbalanced by a reduction in vaccine effectiveness. Documented previous SARS-CoV-2 infection offered some protection against hospitalisation and high protection against death in unvaccinated individuals, but only offered additional protection in vaccinated individuals for the death endpoint. Booster vaccination with mRNA vaccines maintains over 70% protection against hospitalisation and death in breakthrough confirmed omicron infections. FUNDING: Medical Research Council, UK Research and Innovation, Department of Health and Social Care, National Institute for Health Research, Community Jameel, and Engineering and Physical Sciences Research Council.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , Estudios de Cohortes , Inglaterra/epidemiología , Hospitalización , Humanos , Vacunas Sintéticas , Vacunas de ARNm
10.
Clin Infect Dis ; 75(1): e764-e773, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34698827

RESUMEN

BACKGROUND: Phase III trials have estimated coronavirus disease 2019 (COVID-19) vaccine efficacy (VE) against symptomatic and asymptomatic infection. We explore the direction and magnitude of potential biases in these estimates and their implications for vaccine protection against infection and against disease in breakthrough infections. METHODS: We developed a mathematical model that accounts for natural and vaccine-induced immunity, changes in serostatus, and imperfect sensitivity and specificity of tests for infection and antibodies. We estimated expected biases in VE against symptomatic, asymptomatic, and any severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and against disease following infection for a range of vaccine characteristics and measurement approaches, and the likely overall biases for published trial results that included asymptomatic infections. RESULTS: VE against asymptomatic infection measured by polymerase chain reaction (PCR) or serology is expected to be low or negative for vaccines that prevent disease but not infection. VE against any infection is overestimated when asymptomatic infections are less likely to be detected than symptomatic infections and the vaccine protects against symptom development. A competing bias toward underestimation arises for estimates based on tests with imperfect specificity, especially when testing is performed frequently. Our model indicates considerable uncertainty in Oxford-AstraZeneca ChAdOx1 and Janssen Ad26.COV2.S VE against any infection, with slightly higher than published, bias-adjusted values of 59.0% (95% uncertainty interval [UI] 38.4-77.1) and 70.9% (95% UI 49.8-80.7), respectively. CONCLUSIONS: Multiple biases are likely to influence COVID-19 VE estimates, potentially explaining the observed difference between ChAdOx1 and Ad26.COV2.S vaccines. These biases should be considered when interpreting both efficacy and effectiveness study results.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Ad26COVS1 , Infecciones Asintomáticas , Sesgo , COVID-19/prevención & control , Humanos , SARS-CoV-2 , Eficacia de las Vacunas
11.
Lancet ; 398(10313): 1825-1835, 2021 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-34717829

RESUMEN

BACKGROUND: England's COVID-19 roadmap out of lockdown policy set out the timeline and conditions for the stepwise lifting of non-pharmaceutical interventions (NPIs) as vaccination roll-out continued, with step one starting on March 8, 2021. In this study, we assess the roadmap, the impact of the delta (B.1.617.2) variant of SARS-CoV-2, and potential future epidemic trajectories. METHODS: This mathematical modelling study was done to assess the UK Government's four-step process to easing lockdown restrictions in England, UK. We extended a previously described model of SARS-CoV-2 transmission to incorporate vaccination and multi-strain dynamics to explicitly capture the emergence of the delta variant. We calibrated the model to English surveillance data, including hospital admissions, hospital occupancy, seroprevalence data, and population-level PCR testing data using a Bayesian evidence synthesis framework, then modelled the potential trajectory of the epidemic for a range of different schedules for relaxing NPIs. We estimated the resulting number of daily infections and hospital admissions, and daily and cumulative deaths. Three scenarios spanning a range of optimistic to pessimistic vaccine effectiveness, waning natural immunity, and cross-protection from previous infections were investigated. We also considered three levels of mixing after the lifting of restrictions. FINDINGS: The roadmap policy was successful in offsetting the increased transmission resulting from lifting NPIs starting on March 8, 2021, with increasing population immunity through vaccination. However, because of the emergence of the delta variant, with an estimated transmission advantage of 76% (95% credible interval [95% CrI] 69-83) over alpha, fully lifting NPIs on June 21, 2021, as originally planned might have led to 3900 (95% CrI 1500-5700) peak daily hospital admissions under our central parameter scenario. Delaying until July 19, 2021, reduced peak hospital admissions by three fold to 1400 (95% CrI 700-1700) per day. There was substantial uncertainty in the epidemic trajectory, with particular sensitivity to the transmissibility of delta, level of mixing, and estimates of vaccine effectiveness. INTERPRETATION: Our findings show that the risk of a large wave of COVID-19 hospital admissions resulting from lifting NPIs can be substantially mitigated if the timing of NPI relaxation is carefully balanced against vaccination coverage. However, with the delta variant, it might not be possible to fully lift NPIs without a third wave of hospital admissions and deaths, even if vaccination coverage is high. Variants of concern, their transmissibility, vaccine uptake, and vaccine effectiveness must be carefully monitored as countries relax pandemic control measures. FUNDING: National Institute for Health Research, UK Medical Research Council, Wellcome Trust, and UK Foreign, Commonwealth and Development Office.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , COVID-19/transmisión , Control de Enfermedades Transmisibles/organización & administración , SARS-CoV-2 , Cobertura de Vacunación/organización & administración , COVID-19/epidemiología , COVID-19/mortalidad , Inglaterra/epidemiología , Mortalidad Hospitalaria/tendencias , Hospitalización/estadística & datos numéricos , Humanos , Modelos Teóricos , Admisión del Paciente/estadística & datos numéricos
12.
Lancet ; 397(10272): 398-408, 2021 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-33516338

RESUMEN

BACKGROUND: The past two decades have seen expansion of childhood vaccination programmes in low-income and middle-income countries (LMICs). We quantify the health impact of these programmes by estimating the deaths and disability-adjusted life-years (DALYs) averted by vaccination against ten pathogens in 98 LMICs between 2000 and 2030. METHODS: 16 independent research groups provided model-based disease burden estimates under a range of vaccination coverage scenarios for ten pathogens: hepatitis B virus, Haemophilus influenzae type B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, Streptococcus pneumoniae, rotavirus, rubella, and yellow fever. Using standardised demographic data and vaccine coverage, the impact of vaccination programmes was determined by comparing model estimates from a no-vaccination counterfactual scenario with those from a reported and projected vaccination scenario. We present deaths and DALYs averted between 2000 and 2030 by calendar year and by annual birth cohort. FINDINGS: We estimate that vaccination of the ten selected pathogens will have averted 69 million (95% credible interval 52-88) deaths between 2000 and 2030, of which 37 million (30-48) were averted between 2000 and 2019. From 2000 to 2019, this represents a 45% (36-58) reduction in deaths compared with the counterfactual scenario of no vaccination. Most of this impact is concentrated in a reduction in mortality among children younger than 5 years (57% reduction [52-66]), most notably from measles. Over the lifetime of birth cohorts born between 2000 and 2030, we predict that 120 million (93-150) deaths will be averted by vaccination, of which 58 million (39-76) are due to measles vaccination and 38 million (25-52) are due to hepatitis B vaccination. We estimate that increases in vaccine coverage and introductions of additional vaccines will result in a 72% (59-81) reduction in lifetime mortality in the 2019 birth cohort. INTERPRETATION: Increases in vaccine coverage and the introduction of new vaccines into LMICs have had a major impact in reducing mortality. These public health gains are predicted to increase in coming decades if progress in increasing coverage is sustained. FUNDING: Gavi, the Vaccine Alliance and the Bill & Melinda Gates Foundation.


Asunto(s)
Control de Enfermedades Transmisibles , Enfermedades Transmisibles/mortalidad , Enfermedades Transmisibles/virología , Modelos Teóricos , Mortalidad/tendencias , Años de Vida Ajustados por Calidad de Vida , Vacunación , Preescolar , Control de Enfermedades Transmisibles/economía , Control de Enfermedades Transmisibles/estadística & datos numéricos , Enfermedades Transmisibles/economía , Análisis Costo-Beneficio , Países en Desarrollo , Femenino , Salud Global , Humanos , Programas de Inmunización , Masculino , Vacunación/economía , Vacunación/estadística & datos numéricos
13.
Eur Respir J ; 60(1)2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34824057

RESUMEN

BACKGROUND: The success of case isolation and contact tracing for the control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission depends on the accuracy and speed of case identification. We assessed whether inclusion of additional symptoms alongside three canonical symptoms (CS), i.e. fever, cough and loss or change in smell or taste, could improve case definitions and accelerate case identification in SARS-CoV-2 contacts. METHODS: Two prospective longitudinal London (UK)-based cohorts of community SARS-CoV-2 contacts, recruited within 5 days of exposure, provided independent training and test datasets. Infected and uninfected contacts completed daily symptom diaries from the earliest possible time-points. Diagnostic information gained by adding symptoms to the CS was quantified using likelihood ratios and area under the receiver operating characteristic curve. Improvements in sensitivity and time to detection were compared with penalties in terms of specificity and number needed to test. RESULTS: Of 529 contacts within two cohorts, 164 (31%) developed PCR-confirmed infection and 365 (69%) remained uninfected. In the training dataset (n=168), 29% of infected contacts did not report the CS. Four symptoms (sore throat, muscle aches, headache and appetite loss) were identified as early-predictors (EP) which added diagnostic value to the CS. The broadened symptom criterion "≥1 of the CS, or ≥2 of the EP" identified PCR-positive contacts in the test dataset on average 2 days earlier after exposure (p=0.07) than "≥1 of the CS", with only modest reduction in specificity (5.7%). CONCLUSIONS: Broadening symptom criteria to include individuals with at least two of muscle aches, headache, appetite loss and sore throat identifies more infections and reduces time to detection, providing greater opportunities to prevent SARS-CoV-2 transmission.


Asunto(s)
COVID-19 , Faringitis , COVID-19/diagnóstico , Cefalea/diagnóstico , Humanos , Dolor , Faringitis/diagnóstico , Estudios Prospectivos , SARS-CoV-2
14.
PLoS Comput Biol ; 17(2): e1008588, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33571187

RESUMEN

The spatial dynamics of epidemics are fundamentally affected by patterns of human mobility. Mobile phone call detail records (CDRs) are a rich source of mobility data, and allow semi-mechanistic models of movement to be parameterised even for resource-poor settings. While the gravity model typically reproduces human movement reasonably well at the administrative level spatial scale, past studies suggest that parameter estimates vary with the level of spatial discretisation at which models are fitted. Given that privacy concerns usually preclude public release of very fine-scale movement data, such variation would be problematic for individual-based simulations of epidemic spread parametrised at a fine spatial scale. We therefore present new methods to fit fine-scale mathematical mobility models (here we implement variants of the gravity and radiation models) to spatially aggregated movement data and investigate how model parameter estimates vary with spatial resolution. We use gridded population data at 1km resolution to derive population counts at different spatial scales (down to ∼ 5km grids) and implement mobility models at each scale. Parameters are estimated from administrative-level flow data between overnight locations in Kenya and Namibia derived from CDRs: where the model spatial resolution exceeds that of the mobility data, we compare the flow data between a particular origin and destination with the sum of all model flows between cells that lie within those particular origin and destination administrative units. Clear evidence of over-dispersion supports the use of negative binomial instead of Poisson likelihood for count data with high values. Radiation models use fewer parameters than the gravity model and better predict trips between overnight locations for both considered countries. Results show that estimates for some parameters change between countries and with spatial resolution and highlight how imperfect flow data and spatial population distribution can influence model fit.


Asunto(s)
Teléfono Celular , Simulación por Computador , Almacenamiento y Recuperación de la Información , Dinámica Poblacional , Epidemias , Humanos , Kenia , Modelos Estadísticos , Método de Montecarlo , Namibia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Viaje
15.
BMC Infect Dis ; 22(1): 493, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614394

RESUMEN

BACKGROUND: Understanding the characteristics and natural history of novel pathogens is crucial to inform successful control measures. Japan was one of the first affected countries in the COVID-19 pandemic reporting their first case on 14 January 2020. Interventions including airport screening, contact tracing, and cluster investigations were quickly implemented. Here we present insights from the first 3 months of the epidemic in Japan based on detailed case data. METHODS: We conducted descriptive analyses based on information systematically extracted from individual case reports from 13 January to 31 March 2020 including patient demographics, date of report and symptom onset, symptom progression, travel history, and contact type. We analysed symptom progression and estimated the time-varying reproduction number, Rt, correcting for epidemic growth using an established Bayesian framework. Key delays and the age-specific probability of transmission were estimated using data on exposures and transmission pairs. RESULTS: The corrected fitted mean onset-to-reporting delay after the peak was 4 days (standard deviation: ± 2 days). Early transmission was driven primarily by returning travellers with Rt peaking at 2.4 (95% CrI: 1.6, 3.3) nationally. In the final week of the trusted period (16-23 March 2020), Rt accounting for importations diverged from overall Rt at 1.1 (95% CrI: 1.0, 1.2) compared to 1.5 (95% CrI: 1.3, 1.6), respectively. Household (39.0%) and workplace (11.6%) exposures were the most frequently reported potential source of infection. The estimated probability of transmission was assortative by age with individuals more likely to infect, and be infected by, contacts in a similar age group to them. Across all age groups, cases most frequently onset with cough, fever, and fatigue. There were no reported cases of patients < 20 years old developing pneumonia or severe respiratory symptoms. CONCLUSIONS: Information collected in the early phases of an outbreak are important in characterising any novel pathogen. The availability of timely and detailed data and appropriate analyses is critical to estimate and understand a pathogen's transmissibility, high-risk settings for transmission, and key symptoms. These insights can help to inform urgent response strategies.


Asunto(s)
COVID-19 , Adulto , Teorema de Bayes , COVID-19/epidemiología , Humanos , Japón/epidemiología , Pandemias/prevención & control , SARS-CoV-2 , Adulto Joven
16.
Int J Equity Health ; 21(1): 82, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35701823

RESUMEN

BACKGROUND: Evidence to date has shown that inequality in health, and vaccination coverage in particular, can have ramifications to wider society. However, whilst individual studies have sought to characterise these heterogeneities in immunisation coverage at national level, few have taken a broad and quantitative view of the contributing factors to heterogeneity in immunisation coverage and impact, i.e. the number of cases, deaths, and disability-adjusted life years averted. This systematic review aims to highlight these geographic, demographic, and sociodemographic characteristics through a qualitative and quantitative approach, vital to prioritise and optimise vaccination policies. METHODS: A systematic review of two databases (PubMed and Web of Science) was undertaken using search terms and keywords to identify studies examining factors on immunisation inequality and heterogeneity in vaccination coverage. Inclusion criteria were applied independently by two researchers. Studies including data on key characteristics of interest were further analysed through a meta-analysis to produce a pooled estimate of the risk ratio using a random effects model for that characteristic. RESULTS: One hundred and eight studies were included in this review. We found that inequalities in wealth, education, and geographic access can affect vaccine impact and vaccination dropout. We estimated those living in rural areas were not significantly different in terms of full vaccination status compared to urban areas but noted considerable heterogeneity between countries. We found that females were 3% (95%CI[1%, 5%]) less likely to be fully vaccinated than males. Additionally, we estimated that children whose mothers had no formal education were 28% (95%CI[18%,47%]) less likely to be fully vaccinated than those whose mother had primary level, or above, education. Finally, we found that individuals in the poorest wealth quintile were 27% (95%CI [16%,37%]) less likely to be fully vaccinated than those in the richest. CONCLUSIONS: We found a nuanced picture of inequality in vaccination coverage and access with wealth disparity dominating, and likely driving, other disparities. This review highlights the complex landscape of inequity and further need to design vaccination strategies targeting missed subgroups to improve and recover vaccination coverage following the COVID-19 pandemic. TRIAL REGISTRATION: Prospero, CRD42021261927.


Asunto(s)
COVID-19 , Vacunas , Niño , Países en Desarrollo , Femenino , Humanos , Masculino , Pandemias , Vacunación , Cobertura de Vacunación
18.
Euro Surveill ; 27(20)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35593163

RESUMEN

BackgroundThe emergence of the SARS-CoV-2 Alpha variant in England coincided with a rapid increase in the number of PCR-confirmed COVID-19 cases in areas where the variant was concentrated.AimOur aim was to assess whether infection with Alpha was associated with more severe clinical outcomes than the wild type.MethodsLaboratory-confirmed infections with genomically sequenced SARS-CoV-2 Alpha and wild type between October and December 2020 were linked to routine healthcare and surveillance datasets. We conducted two statistical analyses to compare the risk of hospital admission and death within 28 days of testing between Alpha and wild-type infections: a matched cohort study and an adjusted Cox proportional hazards model. We assessed differences in disease severity by comparing hospital admission and mortality, including length of hospitalisation and time to death.ResultsOf 63,609 COVID-19 cases sequenced in England between October and December 2020, 6,038 had the Alpha variant. In the matched cohort analysis, we matched 2,821 cases with Alpha to 2,821 to cases with wild type. In the time-to-event analysis, we observed a 34% increased risk in hospitalisation associated with Alpha compared with wild type, but no significant difference in the risk of mortality.ConclusionWe found evidence of increased risk of hospitalisation after adjusting for key confounders, suggesting increased infection severity associated with the Alpha variant. Rapid assessments of the relative morbidity in terms of clinical outcomes and mortality associated with emerging SARS-CoV-2 variants compared with dominant variants are required to assess overall impact of SARS-CoV-2 mutations.


Asunto(s)
COVID-19 , SARS-CoV-2 , Estudios de Cohortes , Inglaterra/epidemiología , Hospitalización , Hospitales , Humanos , SARS-CoV-2/genética
19.
Clin Infect Dis ; 73(11): e4047-e4057, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-32766823

RESUMEN

BACKGROUND: Emerging evidence suggests ethnic minorities are disproportionately affected by coronavirus disease 2019 (COVID-19). Detailed clinical analyses of multicultural hospitalized patient cohorts remain largely undescribed. METHODS: We performed regression, survival, and cumulative competing risk analyses to evaluate factors associated with mortality in patients admitted for COVID-19 in 3 large London hospitals between 25 February and 5 April, censored as of 1 May 2020. RESULTS: Of 614 patients (median age, 69 [interquartile range, 25] years) and 62% male), 381 (62%) were discharged alive, 178 (29%) died, and 55 (9%) remained hospitalized at censoring. Severe hypoxemia (adjusted odds ratio [aOR], 4.25 [95% confidence interval {CI}, 2.36-7.64]), leukocytosis (aOR, 2.35 [95% CI, 1.35-4.11]), thrombocytopenia (aOR [1.01, 95% CI, 1.00-1.01], increase per 109 decrease), severe renal impairment (aOR, 5.14 [95% CI, 2.65-9.97]), and low albumin (aOR, 1.06 [95% CI, 1.02-1.09], increase per gram decrease) were associated with death. Forty percent (n = 244) were from black, Asian, and other minority ethnic (BAME) groups, 38% (n = 235) were white, and ethnicity was unknown for 22% (n = 135). BAME patients were younger and had fewer comorbidities. Although the unadjusted odds of death did not differ by ethnicity, when adjusting for age, sex, and comorbidities, black patients were at higher odds of death compared to whites (aOR, 1.69 [95% CI, 1.00-2.86]). This association was stronger when further adjusting for admission severity (aOR, 1.85 [95% CI, 1.06-3.24]). CONCLUSIONS: BAME patients were overrepresented in our cohort; when accounting for demographic and clinical profile of admission, black patients were at increased odds of death. Further research is needed into biologic drivers of differences in COVID-19 outcomes by ethnicity.


Asunto(s)
COVID-19 , Anciano , Estudios de Cohortes , Minorías Étnicas y Raciales , Femenino , Humanos , Londres/epidemiología , Masculino , Estudios Retrospectivos , SARS-CoV-2 , Medicina Estatal
20.
Clin Infect Dis ; 73(3): e754-e764, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-33560412

RESUMEN

BACKGROUND: Understanding the drivers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission is crucial for control policies, but evidence of transmission rates in different settings remains limited. METHODS: We conducted a systematic review to estimate secondary attack rates (SARs) and observed reproduction numbers (Robs) in different settings exploring differences by age, symptom status, and duration of exposure. To account for additional study heterogeneity, we employed a beta-binomial model to pool SARs across studies and a negative-binomial model to estimate Robs. RESULTS: Households showed the highest transmission rates, with a pooled SAR of 21.1% (95% confidence interval [CI]:17.4-24.8). SARs were significantly higher where the duration of household exposure exceeded 5 days compared with exposure of ≤5 days. SARs related to contacts at social events with family and friends were higher than those for low-risk casual contacts (5.9% vs 1.2%). Estimates of SARs and Robs for asymptomatic index cases were approximately one-seventh, and for presymptomatic two-thirds of those for symptomatic index cases. We found some evidence for reduced transmission potential both from and to individuals younger than 20 years of age in the household context, which is more limited when examining all settings. CONCLUSIONS: Our results suggest that exposure in settings with familiar contacts increases SARS-CoV-2 transmission potential. Additionally, the differences observed in transmissibility by index case symptom status and duration of exposure have important implications for control strategies, such as contact tracing, testing, and rapid isolation of cases. There were limited data to explore transmission patterns in workplaces, schools, and care homes, highlighting the need for further research in such settings.


Asunto(s)
COVID-19 , SARS-CoV-2 , Trazado de Contacto , Composición Familiar , Humanos , Incidencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA