Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 44(22): 10631-10643, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27634931

RESUMEN

There is a growing perception that long non-coding RNAs (lncRNAs) modulate cellular function. In this study, we analyzed the role of the lncRNA HOTAIR in mesenchymal stem cells (MSCs) with particular focus on senescence-associated changes in gene expression and DNA-methylation (DNAm). HOTAIR binding sites were enriched at genomic regions that become hypermethylated with increasing cell culture passage. Overexpression and knockdown of HOTAIR inhibited or stimulated adipogenic differentiation of MSCs, respectively. Modification of HOTAIR expression evoked only very moderate effects on gene expression, particularly of polycomb group target genes. Furthermore, overexpression and knockdown of HOTAIR resulted in DNAm changes at HOTAIR binding sites. Five potential triple helix forming domains were predicted within the HOTAIR sequence based on reverse Hoogsteen hydrogen bonds. Notably, the predicted triple helix target sites for these HOTAIR domains were also enriched in differentially expressed genes and close to DNAm changes upon modulation of HOTAIR Electrophoretic mobility shift assays provided further evidence that HOTAIR domains form RNA-DNA-DNA triplexes with predicted target sites. Our results demonstrate that HOTAIR impacts on differentiation of MSCs and that it is associated with senescence-associated DNAm. Targeting of epigenetic modifiers to relevant loci in the genome may involve triple helix formation with HOTAIR.


Asunto(s)
Células Madre Mesenquimatosas/fisiología , ARN Largo no Codificante/fisiología , Secuencia de Bases , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Senescencia Celular , Metilación de ADN , Epigénesis Genética , Expresión Génica , Humanos , Conformación de Ácido Nucleico , Unión Proteica , ARN Largo no Codificante/química
2.
Proc Natl Acad Sci U S A ; 109(17): 6638-43, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22496590

RESUMEN

Maternal deletion of the NESP55 differentially methylated region (DMR) (delNESP55/ASdel3-4(m), delNAS(m)) from the GNAS locus in humans causes autosomal dominant pseudohypoparathyroidism type Ib (AD-PHP-Ib(delNASm)), a disorder of proximal tubular parathyroid hormone (PTH) resistance associated with loss of maternal GNAS methylation imprints. Mice carrying a similar, maternally inherited deletion of the Nesp55 DMR (ΔNesp55(m)) replicate these Gnas epigenetic abnormalities and show evidence for PTH resistance, yet these mice demonstrate 100% mortality during the early postnatal period. We investigated whether the loss of extralarge αs (XLαs) imprinting and the resultant biallelic expression of XLαs are responsible for the early postnatal lethality in ΔNesp55(m) mice. First, we found that ΔNesp55(m) mice are hypoglycemic and have reduced stomach-to-body weight ratio. We then generated mice having the same epigenetic abnormalities as the ΔNesp55(m) mice but with normalized XLαs expression due to the paternal disruption of the exon giving rise to this Gnas product. These mice (ΔNesp55(m)/Gnasxl(m+/p-)) showed nearly 100% survival up to postnatal day 10, and a substantial number of them lived to adulthood. The hypoglycemia and reduced stomach-to-body weight ratio observed in 2-d-old ΔNesp55(m) mice were rescued in the ΔNesp55(m)/Gnasxl(m+/p-) mice. Surviving double-mutant animals had significantly reduced Gαs mRNA levels and showed hypocalcemia, hyperphosphatemia, and elevated PTH levels, thus providing a viable model of human AD-PHP-Ib. Our findings show that the hypoglycemia and early postnatal lethality caused by the maternal deletion of the Nesp55 DMR result from biallelic XLαs expression. The double-mutant mice will help elucidate the pathophysiological mechanisms underlying AD-PHP-Ib.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Genes Letales , Impresión Genómica , Hipoglucemia/genética , Seudohipoparatiroidismo/genética , Animales , Peso Corporal , Cromograninas , Hipoglucemia/complicaciones , Ratones , Ratones Endogámicos C57BL , Tamaño de los Órganos , Seudohipoparatiroidismo/complicaciones , Estómago/patología , Seudohipoparatiroidismo
3.
Proc Natl Acad Sci U S A ; 107(7): 3105-10, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-20133622

RESUMEN

Heterozygous coding mutations in the INS gene that encodes preproinsulin were recently shown to be an important cause of permanent neonatal diabetes. These dominantly acting mutations prevent normal folding of proinsulin, which leads to beta-cell death through endoplasmic reticulum stress and apoptosis. We now report 10 different recessive INS mutations in 15 probands with neonatal diabetes. Functional studies showed that recessive mutations resulted in diabetes because of decreased insulin biosynthesis through distinct mechanisms, including gene deletion, lack of the translation initiation signal, and altered mRNA stability because of the disruption of a polyadenylation signal. A subset of recessive mutations caused abnormal INS transcription, including the deletion of the C1 and E1 cis regulatory elements, or three different single base-pair substitutions in a CC dinucleotide sequence located between E1 and A1 elements. In keeping with an earlier and more severe beta-cell defect, patients with recessive INS mutations had a lower birth weight (-3.2 SD score vs. -2.0 SD score) and were diagnosed earlier (median 1 week vs. 10 weeks) compared to those with dominant INS mutations. Mutations in the insulin gene can therefore result in neonatal diabetes as a result of two contrasting pathogenic mechanisms. Moreover, the recessively inherited mutations provide a genetic demonstration of the essential role of multiple sequence elements that regulate the biosynthesis of insulin in man.


Asunto(s)
Diabetes Mellitus/genética , Insulina/biosíntesis , Mutación/genética , Precursores de Proteínas/genética , Análisis Mutacional de ADN , Cartilla de ADN/genética , Dosificación de Gen , Genes Recesivos/genética , Humanos , Recién Nacido , Insulina/genética , Masculino , Sondas de Oligonucleótidos
4.
Commun Biol ; 4(1): 598, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34011964

RESUMEN

Culture expansion of primary cells evokes highly reproducible DNA methylation (DNAm) changes. We have identified CG dinucleotides (CpGs) that become continuously hyper- or hypomethylated during long-term culture of mesenchymal stem cells (MSCs) and other cell types. Bisulfite barcoded amplicon sequencing (BBA-seq) demonstrated that DNAm patterns of neighboring CpGs become more complex without evidence of continuous pattern development and without association to oligoclonal subpopulations. Circularized chromatin conformation capture (4C) revealed reproducible changes in nuclear organization between early and late passages, while there was no enriched interaction with other genomic regions that also harbor culture-associated DNAm changes. Chromatin immunoprecipitation of CTCF did not show significant differences during long-term culture of MSCs, however culture-associated hypermethylation was enriched at CTCF binding sites and hypomethylated CpGs were devoid of CTCF. Taken together, our results support the notion that DNAm changes during culture-expansion are not directly regulated by a targeted mechanism but rather resemble epigenetic drift.


Asunto(s)
Factor de Unión a CCCTC/genética , Cromatina/metabolismo , Metilación de ADN , Epigénesis Genética , Flujo Genético , Células Madre Mesenquimatosas/metabolismo , Envejecimiento , Células Cultivadas , Cromatina/genética , Islas de CpG , Humanos , Técnicas In Vitro , Células Madre Mesenquimatosas/citología
5.
Mol Metab ; 53: 101264, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34091063

RESUMEN

OBJECTIVE: Early postnatal life is a critical period for the establishment of the functional ß-cell mass that will sustain whole-body glucose homeostasis during the lifetime. ß cells are formed from progenitors during embryonic development but undergo significant expansion in quantity and attain functional maturity after birth. The signals and pathways involved in these processes are not fully elucidated. Cyclic adenosine monophosphate (cAMP) is an intracellular signaling molecule that is known to regulate insulin secretion, gene expression, proliferation, and survival of adult ß cells. The heterotrimeric G protein Gs stimulates the cAMP-dependent pathway by activating adenylyl cyclase. In this study, we sought to explore the role of Gs-dependent signaling in postnatal ß-cell development. METHODS: To study Gs-dependent signaling, we generated conditional knockout mice in which the α subunit of the Gs protein (Gsα) was ablated from ß-cells using the Cre deleter line Ins1Cre. Mice were characterized in terms of glucose homeostasis, including in vivo glucose tolerance, glucose-induced insulin secretion, and insulin sensitivity. ß-cell mass was studied using histomorphometric analysis and optical projection tomography. ß-cell proliferation was studied by ki67 and phospho-histone H3 immunostatining, and apoptosis was assessed by TUNEL assay. Gene expression was determined in isolated islets and sorted ß cells by qPCR. Intracellular cAMP was studied in isolated islets using HTRF-based technology. The activation status of the cAMP and insulin-signaling pathways was determined by immunoblot analysis of the relevant components of these pathways in isolated islets. In vitro proliferation of dissociated islet cells was assessed by BrdU incorporation. RESULTS: Elimination of Gsα in ß cells led to reduced ß-cell mass, deficient insulin secretion, and severe glucose intolerance. These defects were evident by weaning and were associated with decreased proliferation and inadequate expression of key ß-cell identity and maturation genes in postnatal ß-cells. Additionally, loss of Gsα caused a broad multilevel disruption of the insulin transduction pathway that resulted in the specific abrogation of the islet proliferative response to insulin. CONCLUSION: We conclude that Gsα is required for ß-cell growth and maturation in the early postnatal stage and propose that this is partly mediated via its crosstalk with insulin signaling. Our findings disclose a tight connection between these two pathways in postnatal ß cells, which may have implications for using cAMP-raising agents to promote ß-cell regeneration and maturation in diabetes.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Subunidades alfa de la Proteína de Unión al GTP Gs/deficiencia , Ratones Noqueados , Ratones Transgénicos , Transducción de Señal
6.
Stem Cell Res Ther ; 11(1): 105, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32138773

RESUMEN

BACKGROUND: The use of mesenchymal stromal cells (MSCs) for research and clinical application is hampered by cellular heterogeneity and replicative senescence. Generation of MSC-like cells from induced pluripotent stem cells (iPSCs) may circumvent these limitations, and such iPSC-derived MSCs (iMSCs) are already tested in clinical trials. So far, a comparison of MSCs and iMSCs was particularly addressed in bulk culture. Despite the high hopes in cellular therapy, only little is known how the composition of different subclones changes in these cell preparations during culture expansion. METHODS: In this study, we used multicolor lentiviral genetic barcoding for the marking of individual cells within cell preparations. Based on this, we could track the clonal composition of syngenic MSCs, iPSCs, and iMSCs during culture expansion. Furthermore, we analyzed DNA methylation patterns at senescence-associated genomic regions by barcoded bisulfite amplicon sequencing. The proliferation and differentiation capacities of individual subclones within MSCs and iMSCs were investigated with limiting dilution assays. RESULTS: Overall, the clonal composition of primary MSCs and iPSCs gradually declined during expansion. In contrast, iMSCs became oligoclonal early during differentiation, indicating that they were derived from few individual iPSCs. This dominant clonal outgrowth of iMSCs was not associated with changes in chromosomal copy number variation. Furthermore, clonal dynamics were not clearly reflected by stochastically acquired DNA methylation patterns. Limiting dilution assays revealed that iMSCs are heterogeneous in colony formation and in vitro differentiation potential, while this was even more pronounced in primary MSCs. CONCLUSIONS: Our results indicate that the subclonal diversity of MSCs and iPSCs declines gradually during in vitro culture, whereas derivation of iMSCs may stem from few individual iPSCs. Differentiation regimen needs to be further optimized to achieve homogeneous differentiation of iPSCs towards iMSCs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Mesenquimatosas , Diferenciación Celular , Células Cultivadas , Variaciones en el Número de Copia de ADN
7.
Stem Cell Reports ; 14(2): 201-209, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31983656

RESUMEN

Long-term culture of primary cells is characterized by functional and secretory changes, which ultimately result in replicative senescence. It is largely unclear how the metabolome of cells changes during replicative senescence and if such changes are consistent across different cell types. We have directly compared culture expansion of primary mesenchymal stromal cells (MSCs) and induced pluripotent stem cell-derived MSCs (iMSCs) until they reached growth arrest. Both cell types acquired similar changes in morphology, in vitro differentiation potential, senescence-associated ß-galactosidase, and DNA methylation. Furthermore, MSCs and iMSCs revealed overlapping gene expression changes, particularly in functional categories related to metabolic processes. We subsequently compared the metabolomes of MSCs and iMSCs and observed overlapping senescence-associated changes in both cell types, including downregulation of nicotinamide ribonucleotide and upregulation of orotic acid. Taken together, replicative senescence is associated with a highly reproducible senescence-associated metabolomics phenotype, which may be used to monitor the state of cellular aging.


Asunto(s)
Senescencia Celular , Células Madre Pluripotentes Inducidas/citología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Metabolómica , Anciano , Células Cultivadas , Senescencia Celular/genética , Metabolismo Energético , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Redes y Vías Metabólicas , Metaboloma/genética , Persona de Mediana Edad , Fenotipo
8.
Nat Commun ; 11(1): 644, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-32005828

RESUMEN

Obesity and type 2 diabetes mellitus are global emergencies and long noncoding RNAs (lncRNAs) are regulatory transcripts with elusive functions in metabolism. Here we show that a high fraction of lncRNAs, but not protein-coding mRNAs, are repressed during diet-induced obesity (DIO) and refeeding, whilst nutrient deprivation induced lncRNAs in mouse liver. Similarly, lncRNAs are lost in diabetic humans. LncRNA promoter analyses, global cistrome and gain-of-function analyses confirm that increased MAFG signaling during DIO curbs lncRNA expression. Silencing Mafg in mouse hepatocytes and obese mice elicits a fasting-like gene expression profile, improves glucose metabolism, de-represses lncRNAs and impairs mammalian target of rapamycin (mTOR) activation. We find that obesity-repressed LincIRS2 is controlled by MAFG and observe that genetic and RNAi-mediated LincIRS2 loss causes elevated blood glucose, insulin resistance and aberrant glucose output in lean mice. Taken together, we identify a MAFG-lncRNA axis controlling hepatic glucose metabolism in health and metabolic disease.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Glucosa/metabolismo , Hígado/metabolismo , Factor de Transcripción MafG/genética , Obesidad/genética , ARN Largo no Codificante/genética , Proteínas Represoras/genética , Anciano , Animales , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Factor de Transcripción MafG/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Obesidad/metabolismo , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
9.
Clin Endocrinol (Oxf) ; 69(5): 705-12, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18394017

RESUMEN

CONTEXT: The GNAS gene encodes the alpha-subunit of the stimulatory G proteins, which play a crucial role in intracellular signal transduction of peptide and neurotransmitter receptors. Heterozygous inactivating maternally inherited mutations of GNAS (including translation initiation mutations, amino acid substitutions, nonsense mutations, splice site mutations and small insertions or deletions) lead to a phenotype in which Albright hereditary osteodystrophy is associated with pseudohypoparathyroidism type Ia. OBJECTIVE: We sought to identify the molecular defect in a patient who was thought to have PHP-Ia. METHODS AND RESULTS: The GNAS gene of a 5-year-old boy with brachydactily, mental retardation, pseudohypoparathyroidism and congenital hypothyroidism was investigated. We found a heterozygous inversion of exon 2 and part of intron 1 of de novo origin. Molecular studies of cDNA from blood RNA demonstrated that both the normal and the mutant variants were stable and that new splice-sites were generated. CONCLUSION: This report demonstrates the first evidence for an inversion at the GNAS gene responsible of pseudohypoparathyroidism type Ia.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Seudohipoparatiroidismo/genética , Secuencia de Bases , Preescolar , Cromograninas , Hipotiroidismo Congénito/complicaciones , Hipotiroidismo Congénito/genética , Humanos , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/genética , Masculino , Modelos Biológicos , Datos de Secuencia Molecular , Mutación/fisiología , Conformación de Ácido Nucleico , Linaje , Polidactilia/complicaciones , Polidactilia/genética , Seudohipoparatiroidismo/congénito
10.
Clin Endocrinol (Oxf) ; 68(6): 873-8, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18248649

RESUMEN

OBJECTIVE: The aim of this study was to characterize glucokinase (GCK) alterations in maturity-onset diabetes of the young 2 (MODY2)-suspected patients and to investigate their clinical characteristics in relation to the parental origin of the mutation. PATIENTS AND METHODS: We studied a group of 57 unrelated Spanish patients presenting with MODY2 phenotype. Patients without mutation in the coding region of the GCK gene were screened for rearrangements by Multiplex Ligation-dependent Probe Amplification (MLPA). After classification according to the parental origin of the mutation, clinical characteristics were compared between the groups. RESULTS: We detected a point mutation or small deletion or insertion of the GCK gene in 47 patients (82.5%); 19 mutations were novel. In addition, we found a whole-gene deletion by MLPA. Patients carrying a GCK gene defect and those with MODY of unknown genetic origin shows similar phenotypes. Comparison of clinical parameters according to the origin of the mutation did not show any differences in the birth weight (BW) nor in age at diagnosis. Patients who inherited the mutation from the father had higher fasting glucose levels at diagnosis. CONCLUSION: Although the presence of haploinsufficiency of GCK is not a common cause of MODY2, gene dose analysis should be performed when no mutation is found. Strict maternal euglycaemia can contribute to intrauterine growth restriction and low BW when the foetus has inherited the GCK mutation from the mother. As foetal genotype in generally is not known, serial foetal abdominal scans may act as a surrogate for this.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Proteínas Serina-Treonina Quinasas/genética , Adolescente , Niño , Preescolar , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Regulación Enzimológica de la Expresión Génica/fisiología , Predisposición Genética a la Enfermedad , Quinasas del Centro Germinal , Haplotipos , Humanos , Masculino , Mutación , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , España
11.
Endocrinol Nutr ; 55(10): 476-83, 2008 Dec.
Artículo en Inglés, Español | MEDLINE | ID: mdl-22980463

RESUMEN

Pseudohypoparathyroidism (PHP) is characterized by hypocalcemia and hyperphosphatemia due to resistance to parathyroid hormone (PTH). Patients with PHP-Ia often show additional hormone resistance and characteristic physical features that are collectively termed Albright's hereditary osteodystrophy (AHO). These features are also present in pseudopseudohypoparathyroidism (PPHP), but patients with this disorder do not show hormone resistance. PHP-Ib patients, on the other hand, predominantly show renal PTH resistance and lack features of AHO. From the genetic point of view, PHP-I is caused by defects in the GNAS gene or in the 5' region of this gene locus. PHP-Ia is caused by heterozygous inactivating mutations in any of the 13 exons codifying the alpha subunit of the stimulatory guanine nucleotide-binding protein (Gsα), while PHP-Ib is due to alterations in the methylation pattern of the 5' regions of the locus, usually associated with upstream microdeletions that are maternally transmitted. The imprinting pattern that affects the GNAS locus has important implications for the inheritance pattern and consequently for appropriate genetic counselling.

12.
J Bone Miner Res ; 33(2): 356-361, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28926142

RESUMEN

Osteoporosis is an age-related metabolic bone disease. Hence, osteoporotic patients might suffer from molecular features of accelerated aging, which is generally reflected by specific age-associated DNA methylation (DNAm) changes. In this study, we analyzed genomewide DNAm profiles of peripheral blood from patients with manifest primary osteoporosis and non-osteoporotic controls. Statistical analysis did not reveal any individual CG dinucleotides (CpG sites) with significant aberrant DNAm in osteoporosis. Subsequently, we analyzed if age-associated DNAm patterns are increased in primary osteoporosis (OP). Using three independent age-predictors we did not find any evidence for accelerated epigenetic age in blood of osteoporotic patients. Taken together, osteoporosis is not reflected by characteristic DNAm patterns of peripheral blood that might be used as biomarker for the disease. The prevalence of osteoporosis is age-associated-but it is not associated with premature epigenetic aging in peripheral blood. © 2017 American Society for Bone and Mineral Research.


Asunto(s)
Envejecimiento/genética , Metilación de ADN/genética , Epigénesis Genética , Osteoporosis/sangre , Osteoporosis/genética , Anciano , Biomarcadores/sangre , Islas de CpG/genética , Humanos , Persona de Mediana Edad
13.
Stem Cell Res Ther ; 9(1): 108, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29669575

RESUMEN

BACKGROUND: Senolytic drugs are thought to target senescent cells and might thereby rejuvenate tissues. In fact, such compounds were suggested to increase health and lifespan in various murine aging models. So far, effects of senolytic drugs have not been analysed during replicative senescence of human mesenchymal stromal cells (MSCs). METHODS: In this study, we tested four potentially senolytic drugs: ABT-263 (navitoclax), quercetin, nicotinamide riboside, and danazol. The effects of these compounds were analysed during long-term expansion of MSCs, until replicative senescence. Furthermore, we determined the effect on molecular markers for replicative senescence, such as senescence-associated beta-galactosidase staining (SA-ß-gal), telomere attrition, and senescence-associated DNA methylation changes. RESULTS: Co-culture experiments of fluorescently labelled early and late passages revealed that particularly ABT-263 had a significant but moderate senolytic effect. This was in line with reduced SA-ß-gal staining in senescent MSCs upon treatment with ABT-263. However, none of the drugs had significant effects on the maximum number of population doublings, telomere length, or epigenetic senescence predictions. CONCLUSIONS: Of the four tested drugs, only ABT-263 revealed a senolytic effect in human MSCs-and even treatment with this compound did not rejuvenate MSCs with regard to telomere length or epigenetic senescence signature. It will be important to identify more potent senolytic drugs to meet the high hopes for regenerative medicine.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Metilación de ADN/genética , Células Madre Mesenquimatosas/efectos de los fármacos , Diferenciación Celular , Células Cultivadas , Humanos , Transducción de Señal
14.
Nat Commun ; 9(1): 3622, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30190464

RESUMEN

Increasing brown adipose tissue (BAT) thermogenesis in mice and humans improves metabolic health and understanding BAT function is of interest for novel approaches to counteract obesity. The role of long noncoding RNAs (lncRNAs) in these processes remains elusive. We observed maternally expressed, imprinted lncRNA H19 increased upon cold-activation and decreased in obesity in BAT. Inverse correlations of H19 with BMI were also observed in humans. H19 overexpression promoted, while silencing of H19 impaired adipogenesis, oxidative metabolism and mitochondrial respiration in brown but not white adipocytes. In vivo, H19 overexpression protected against DIO, improved insulin sensitivity and mitochondrial biogenesis, whereas fat H19 loss sensitized towards HFD weight gains. Strikingly, paternally expressed genes (PEG) were largely absent from BAT and we demonstrated that H19 recruits PEG-inactivating H19-MBD1 complexes and acts as BAT-selective PEG gatekeeper. This has implications for our understanding how monoallelic gene expression affects metabolism in rodents and, potentially, humans.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Impresión Genómica , Obesidad/genética , ARN Largo no Codificante/genética , Tejido Adiposo Pardo/patología , Tejido Adiposo Blanco/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/genética , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Obesidad/etiología
15.
J Clin Endocrinol Metab ; 92(6): 2370-3, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17405843

RESUMEN

CONTEXT: Several endocrine disorders that share resistance to PTH are grouped under the term pseudohypoparathyroidism (PHP). PHP type I, associated with blunted PTH-induced nephrogenous cAMP formation and phosphate excretion, is subdivided according to the presence or absence of additional endocrine abnormalities, Albright's hereditary osteodystrophy (AHO), and reduced Gsalpha activity caused by GNAS mutations. OBJECTIVE: We sought to identify the molecular defect in four unrelated patients who were thought to have PHP-Ia because of PTH and TSH resistance and mild AHO features. METHODS: Gsalpha activity and mutation analysis, and assessment of GNAS haplotype, methylation, and gene expression were performed for probands and family members. RESULTS: Two patients showed modest decreases in erythrocyte Gsalpha activity. Instead of Gsalpha point mutations, however, all four patients showed methylation defects of the GNAS locus, a feature previously described only for PHP-Ib. Furthermore, one patient with an isolated loss of GNAS exon A/B methylation had the 3-kb STX16 deletion frequently identified in PHP-Ib patients. In all but one of the remaining patients, haplotype analysis excluded large deletions or uniparental disomy as the cause of the observed methylation changes. CONCLUSIONS: Our investigations indicate that an overlap may exist between molecular and clinical features of PHP-Ia and PHP-Ib. No current mechanisms can explain the AHO-like features of our patients, some of which may not be linked to GNAS. Therefore, patients with hormone resistance and AHO-like features in whom coding Gsalpha mutations have been excluded should be evaluated for epigenetic alterations within GNAS.


Asunto(s)
Displasia Fibrosa Poliostótica/diagnóstico por imagen , Displasia Fibrosa Poliostótica/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Seudohipoparatiroidismo/diagnóstico por imagen , Seudohipoparatiroidismo/genética , Adulto , Cromograninas , Epigénesis Genética/fisiología , Femenino , Displasia Fibrosa Poliostótica/fisiopatología , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Humanos , Lactante , Huesos del Metacarpo/diagnóstico por imagen , Fenotipo , Seudohipoparatiroidismo/fisiopatología , Radiografía , Índice de Severidad de la Enfermedad
16.
J Steroid Biochem Mol Biol ; 172: 20-28, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28539237

RESUMEN

Cross-sex hormone therapy (CHT) is critical for phenotypical and physiological transition in adults with gender dysphoria (GD). However, the impact of the CHT onto the molecular level/epigenetic regulation has not been comprehensively addressed. We postulate that CHT in GD could drive changes at the androgen receptor (AR), estrogen receptor alpha (ESR1) and estrogen receptor beta (ESR2), affecting their DNA methylation pattern and mRNA expression that may influence in the phenotypical changes associated to CHT. We carried out a prospective observational study on individuals with a diagnosis of GD. 18 subjects (no previous CHT): 12 female to male (FtoM) and 6 male to female (MtoF). An Epityper Mass array TM method was used to study the DNA methylation and Real-time PCR quantitative reverse transcription PCR (qRT-PCR) was used to quantify the gene expression. The analysis of AR, ESR1 and ESR2 receptor was performed at baseline, 6 and 12 months after CHT. No differences in DNA methylation of ESR were found in MtoF, while DNA methylation was increased in FtoM at 6 and 12 months of CHT. The AR showed a significant increase of methylation in MtoF group after 12 months of estrogenic treatment. Regarding the expression analysis, AR expression was significantly decreased in FtoM upon CHT treatment. AR, ESR1 and ESR2 methylation were correlated with anthropometric, metabolic and hormonal parameters in FtoM and MtoF. Our results support that CHT is associated to epigenetic changes that might affect the response to treatment with sex steroids.


Asunto(s)
Acetato de Ciproterona/uso terapéutico , Estradiol/análogos & derivados , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/genética , Disforia de Género/tratamiento farmacológico , Receptores Androgénicos/genética , Testosterona/análogos & derivados , Adolescente , Adulto , Antropometría , Metilación de ADN/efectos de los fármacos , Esquema de Medicación , Epigénesis Genética , Estradiol/uso terapéutico , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Femenino , Hormona Folículo Estimulante/genética , Hormona Folículo Estimulante/metabolismo , Disforia de Género/genética , Disforia de Género/metabolismo , Disforia de Género/patología , Humanos , Hormona Luteinizante/genética , Hormona Luteinizante/metabolismo , Masculino , Prolactina/genética , Prolactina/metabolismo , Regiones Promotoras Genéticas , Estudios Prospectivos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores Androgénicos/metabolismo , Globulina de Unión a Hormona Sexual , Transducción de Señal , Testosterona/uso terapéutico
17.
Sci Rep ; 7(1): 5132, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28698620

RESUMEN

Culture medium of mesenchymal stromal cells (MSCs) is usually supplemented with either human platelet lysate (HPL) or fetal calf serum (FCS). Many studies have demonstrated that proliferation and cellular morphology are affected by these supplements - it is therefore important to determine if they favor outgrowth of different subpopulations and thereby impact on the heterogeneous composition of MSCs. We have isolated and expanded human bone marrow-derived MSCs in parallel with HPL or FCS and demonstrated that HPL significantly increases proliferation and leads to dramatic differences in cellular morphology. Remarkably, global DNA-methylation profiles did not reveal any significant differences. Even at the transcriptomic level, there were only moderate changes in pairwise comparison. Furthermore, the effects on proliferation, cytoskeletal organization, and focal adhesions were reversible by interchanging to opposite culture conditions. These results indicate that cultivation of MSCs with HPL or FCS has no systematic bias for specific cell types.


Asunto(s)
Plaquetas/química , Medios de Cultivo/farmacología , Células Madre Mesenquimatosas/citología , Suero/química , Animales , Bovinos , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Extractos Celulares/química , Extractos Celulares/farmacología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Medios de Cultivo/química , ADN/metabolismo , Metilación de ADN/efectos de los fármacos , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/metabolismo , Humanos , Células Madre Mesenquimatosas/química , Células Madre Mesenquimatosas/efectos de los fármacos
18.
J Clin Endocrinol Metab ; 101(11): 4283-4289, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27410178

RESUMEN

CONTEXT: Jansen's metaphyseal chondrodysplasia (JMC) is a rare skeletal dysplasia characterized by abnormal endochondral bone formation and typically severe hypercalcemia despite normal/low levels of PTH. Five different heterozygous activating PTH/PTHrP receptor (PTH1R) mutations that change one of three different amino acid residues are known to cause JMC. OBJECTIVES: Establishing the diagnosis of JMC during infancy or early childhood can be challenging, especially in the absence of family history and/or overt hypercalcemia. We therefore sought to provide radiographic findings supporting this diagnosis early in life. PATIENTS AND METHODS: Three patients, a mother and her two sons, had radiographic evidence for JMC. However, obvious hypercalcemia and suppressed PTH levels were encountered only in both affected children. Sanger sequencing and endonuclease (SphI) digestion of PCR-amplified genomic DNA were performed to search for the H223R-PTH1R mutation. RESULTS: The heterozygous H223R mutation was identified in all three affected individuals. Surprisingly, however, the now 38-year-old mother was never overtly hypercalcemic and was therefore not diagnosed until her sons were found to be affected by JMC at the ages of 28 months and 40 days, respectively. The presented radiographic findings at different ages will help diagnose other infants/toddlers suspected of having JMC. CONCLUSION: The H223R mutation is typically associated with profound hypercalcemia despite low/normal PTH levels. However, the findings presented herein show that overt hypercalcemia is not always encountered in JMC, even if caused by this relatively frequent mutation, which is similar to observations with other PTH1R mutations that show less constitutive activity.


Asunto(s)
Hipercalcemia/sangre , Osteocondrodisplasias/genética , Hormona Paratiroidea/sangre , Receptor de Hormona Paratiroídea Tipo 1/genética , Preescolar , Femenino , Humanos , Hipercalcemia/etiología , Lactante , Masculino , Osteocondrodisplasias/sangre , Osteocondrodisplasias/complicaciones , Osteocondrodisplasias/diagnóstico por imagen , Linaje
19.
J Bone Miner Res ; 29(3): 749-60, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23956044

RESUMEN

Pseudohypoparathyroidism type-Ia (PHP-Ia), characterized by renal proximal tubular resistance to parathyroid hormone (PTH), results from maternal mutations of GNAS that lead to loss of α-subunit of the stimulatory G protein (Gαs) activity. Gαs expression is paternally silenced in the renal proximal tubule, and this genomic event is critical for the development of PTH resistance, as patients display impaired hormone action only if the mutation is inherited maternally. The primary clinical finding of PHP-Ia is hypocalcemia, which can lead to various neuromuscular defects including seizures. PHP-Ia patients frequently do not present with hypocalcemia until after infancy, but it has remained uncertain whether PTH resistance occurs in a delayed fashion. Analyzing reported cases of PHP-Ia with documented GNAS mutations and mice heterozygous for disruption of Gnas, we herein determined that the manifestation of PTH resistance caused by the maternal loss of Gαs, ie, hypocalcemia and elevated serum PTH, occurs after early postnatal life. To investigate whether this delay could reflect gradual development of paternal Gαs silencing, we then analyzed renal proximal tubules isolated by laser capture microdissection from mice with either maternal or paternal disruption of Gnas. Our results revealed that, whereas expression of Gαs mRNA in this tissue is predominantly from the maternal Gnas allele at weaning (3 weeks postnatal) and in adulthood, the contributions of the maternal and paternal Gnas alleles to Gαs mRNA expression are equal at postnatal day 3. In contrast, we found that paternal Gαs expression is already markedly repressed in brown adipose tissue at birth. Thus, the mechanisms silencing the paternal Gαs allele in renal proximal tubules are not operational during early postnatal development, and this finding correlates well with the latency of PTH resistance in patients with PHP-Ia.


Asunto(s)
Alelos , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Silenciador del Gen , Heterocigoto , Hormona Paratiroidea/uso terapéutico , Animales , Resistencia a Medicamentos , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Túbulos Renales Proximales/metabolismo , Masculino , Ratones , Mutación
20.
PLoS One ; 9(7): e101616, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24988226

RESUMEN

Autoimmune polyglandular syndrome type 1 (APS-1, OMIM 240300) is a rare autosomal recessive disorder, characterized by the presence of at least two of three major diseases: hypoparathyroidism, Addison's disease, and chronic mucocutaneous candidiasis. We aim to identify the molecular defects and investigate the clinical and mutational characteristics in an index case and other members of a consanguineous family. We identified a novel homozygous mutation in the splice site acceptor (SSA) of intron 5 (c.653-1G>A) in two siblings with different clinical outcomes of APS-1. Coding DNA sequencing revealed that this AIRE mutation potentially compromised the recognition of the constitutive SSA of intron 5, splicing upstream onto a nearby cryptic SSA in intron 5. Surprisingly, the use of an alternative SSA entails the uncovering of a cryptic donor splice site in exon 5. This new transcript generates a truncated protein (p.A214fs67X) containing the first 213 amino acids and followed by 68 aberrant amino acids. The mutation affects the proper splicing, not only at the acceptor but also at the donor splice site, highlighting the complexity of recognizing suitable splicing sites and the importance of sequencing the intron-exon junctions for a more precise molecular diagnosis and correct genetic counseling. As both siblings were carrying the same mutation but exhibited a different APS-1 onset, and one of the brothers was not clinically diagnosed, our finding highlights the possibility to suspect mutations in the AIRE gene in cases of childhood chronic candidiasis and/or hypoparathyroidism otherwise unexplained, especially when the phenotype is associated with other autoimmune diseases.


Asunto(s)
Mutación , Poliendocrinopatías Autoinmunes/genética , Sitios de Empalme de ARN , Factores de Transcripción/genética , Secuencia de Bases , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Moleculares , Datos de Secuencia Molecular , Proteína AIRE
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA