Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 17(8): 985-96, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27376471

RESUMEN

The activation marker CD69 is expressed by skin γδ T cells. Here we found that CD69 controlled the aryl hydrocarbon receptor (AhR)-dependent secretion of interleukin 22 (IL-22) by γδ T cells, which contributed to the development of psoriasis induced by IL-23. CD69 associated with the aromatic-amino-acid-transporter complex LAT1-CD98 and regulated its surface expression and uptake of L-tryptophan (L-Trp) and the intracellular quantity of L-Trp-derived activators of AhR. In vivo administration of L-Trp, an inhibitor of AhR or IL-22 abrogated the differences between CD69-deficient mice and wild-type mice in skin inflammation. We also observed LAT1-mediated regulation of AhR activation and IL-22 secretion in circulating Vγ9(+) γδ T cells of psoriatic patients. Thus, CD69 serves as a key mediator of the pathogenesis of psoriasis by controlling LAT1-CD98-mediated metabolic cues.


Asunto(s)
Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Lectinas Tipo C/metabolismo , Psoriasis/inmunología , Piel/inmunología , Subgrupos de Linfocitos T/inmunología , Células Th17/inmunología , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+L , Animales , Antígenos CD/genética , Antígenos de Diferenciación de Linfocitos T/genética , Células Cultivadas , Endocitosis , Proteína-1 Reguladora de Fusión/metabolismo , Interleucina-23/inmunología , Interleucinas/metabolismo , Lectinas Tipo C/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Triptófano/metabolismo , Interleucina-22
3.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36982624

RESUMEN

The aryl hydrocarbon receptor (AHR) is a sensor of low-molecular-weight molecule signals that originate from environmental exposures, the microbiome, and host metabolism. Building upon initial studies examining anthropogenic chemical exposures, the list of AHR ligands of microbial, diet, and host metabolism origin continues to grow and has provided important clues as to the function of this enigmatic receptor. The AHR has now been shown to be directly involved in numerous biochemical pathways that influence host homeostasis, chronic disease development, and responses to toxic insults. As this field of study has continued to grow, it has become apparent that the AHR is an important novel target for cancer, metabolic diseases, skin conditions, and autoimmune disease. This meeting attempted to cover the scope of basic and applied research being performed to address possible applications of our basic knowledge of this receptor on therapeutic outcomes.


Asunto(s)
Enfermedades Autoinmunes , Neoplasias , Humanos , Receptores de Hidrocarburo de Aril/metabolismo , Universidades , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Dieta
4.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36499247

RESUMEN

The aryl hydrocarbon receptor (AHR) is a markedly established regulator of a plethora of cellular and molecular processes. Its initial role in the detoxification of xenobiotic compounds has been partially overshadowed by its involvement in homeostatic and organ physiology processes. In fact, the discovery of its ability to bind specific target regulatory sequences has allowed for the understanding of how AHR modulates such processes. Thereby, AHR presents functions in transcriptional regulation, chromatin architecture modifications and participation in different key signaling pathways. Interestingly, such fields of influence end up affecting organ and tissue homeostasis, including regenerative response both to endogenous and exogenous stimuli. Therefore, from classical spheres such as canonical transcriptional regulation in embryonic development, cell migration, differentiation or tumor progression to modern approaches in epigenetics, senescence, immune system or microbiome, this review covers all aspects derived from the balance between regulation/deregulation of AHR and its physio-pathological consequences.


Asunto(s)
Receptores de Hidrocarburo de Aril , Transducción de Señal , Receptores de Hidrocarburo de Aril/metabolismo , Homeostasis , Xenobióticos , Regulación de la Expresión Génica
5.
FASEB J ; 33(11): 12644-12654, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31483997

RESUMEN

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor, largely known for its role in xenobiotic metabolism and detoxification as well as its crucial role as a regulator of inflammation. Here, we have compared a cohort wild-type and AhR-null mice along aging to study the relationship between this receptor and age-associated inflammation, termed as "inflammaging," both at a systemic and the CNS level. Our results show that AhR deficiency is associated with a premature aged phenotype, characterized by early inflammaging, as shown by an increase in plasma cytokines levels. The absence of AhR also promotes the appearance of brain aging anatomic features, such as the loss of the white matter integrity. In addition, AhR-/- mice present an earlier spatial memory impairment and an enhanced astrogliosis in the hippocampus when compared with their age-matched AhR+/+ controls. Importantly, we have found that AhR protein levels decrease with age in this brain structure, strongly suggesting a link between AhR and aging.-Bravo-Ferrer, I., Cuartero, M. I., Medina, V., Ahedo-Quero, D., Peña-Martínez, C., Pérez-Ruíz, A., Fernández-Valle, M. E., Hernández-Sánchez, C., Fernández-Salguero, P. M., Lizasoain, I., Moro, M. A. Lack of the aryl hydrocarbon receptor accelerates aging in mice.


Asunto(s)
Envejecimiento Prematuro , Envejecimiento , Hipocampo , Receptores de Hidrocarburo de Aril/deficiencia , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Envejecimiento Prematuro/genética , Envejecimiento Prematuro/metabolismo , Envejecimiento Prematuro/patología , Animales , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Ratones , Ratones Noqueados , Receptores de Hidrocarburo de Aril/metabolismo , Memoria Espacial
6.
Nucleic Acids Res ; 44(10): 4665-83, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-26883630

RESUMEN

Cell differentiation is a central process in development and in cancer growth and dissemination. OCT4 (POU5F1) and NANOG are essential for cell stemness and pluripotency; yet, the mechanisms that regulate their expression remain largely unknown. Repetitive elements account for almost half of the Human Genome; still, their role in gene regulation is poorly understood. Here, we show that the dioxin receptor (AHR) leads to differentiation of human carcinoma cells through the transcriptional upregulation of Alu retrotransposons, whose RNA transcripts can repress pluripotency genes. Despite the genome-wide presence of Alu elements, we provide evidences that those located at the NANOG and OCT4 promoters bind AHR, are transcribed by RNA polymerase-III and repress NANOG and OCT4 in differentiated cells. OCT4 and NANOG repression likely involves processing of Alu-derived transcripts through the miRNA machinery involving the Microprocessor and RISC. Consistently, stable AHR knockdown led to basal undifferentiation, impaired Alus transcription and blockade of OCT4 and NANOG repression. We suggest that transcripts produced from AHR-regulated Alu retrotransposons may control the expression of stemness genes OCT4 and NANOG during differentiation of carcinoma cells. The control of discrete Alu elements by specific transcription factors may have a dynamic role in genome regulation under physiological and diseased conditions.


Asunto(s)
Elementos Alu , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Diferenciación Celular/genética , Regulación Neoplásica de la Expresión Génica , Receptores de Hidrocarburo de Aril/fisiología , Teratocarcinoma/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinoma/patología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Ratones , MicroARNs/metabolismo , Proteína Homeótica Nanog/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Regiones Promotoras Genéticas , ARN Polimerasa III/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Teratocarcinoma/enzimología , Teratocarcinoma/metabolismo , Teratocarcinoma/patología , Teratoma/genética , Teratoma/metabolismo , Transcripción Genética , Tretinoina/farmacología
7.
Mol Cancer ; 14: 148, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26242870

RESUMEN

BACKGROUND: The dioxin (AhR) receptor can have oncogenic or tumor suppressor activities depending on the phenotype of the target cell. We have shown that AhR knockdown promotes melanoma primary tumorigenesis and lung metastasis in the mouse and that human metastatic melanomas had reduced AhR levels with respect to benign nevi. METHODS: Mouse melanoma B16F10 cells were engineered by retroviral transduction to stably downregulate AhR expression, Aldh1a1 expression or both. They were characterized for Aldh1a1 activity, stem cell markers and migration and invasion in vitro. Their tumorigenicity in vivo was analyzed using xenografts and lung metastasis assays as well as in vivo imaging. RESULTS: Depletion of aldehyde dehydrogenase 1a1 (Aldh1a1) impairs the pro-tumorigenic and pro-metastatic advantage of melanoma cells lacking AhR expression (sh-AhR). Thus, Aldh1a1 knockdown in sh-AhR cells (sh-AhR + sh-Aldh1a1) diminished their migration and invasion potentials and blocked tumor growth and metastasis to the lungs in immunocompetent AhR+/+ recipient mice. However, Aldh1a1 downmodulation in AhR-expressing B16F10 cells did not significantly affect tumor growth in vivo. Aldh1a1 knockdown reduced the high levels of CD133(+)/CD29(+)/CD44(+) cells, melanosphere size and the expression of the pluripotency marker Sox2 in sh-AhR cells. Interestingly, Sox2 increased Aldh1a1 expression in sh-AhR but not in sh-AhR + sh-Aldh1a1 cells, suggesting that Aldh1a1 and Sox2 may be co-regulated in melanoma cells. In vivo imaging revealed that mice inoculated with AhR + Aldh1a1 knockdown cells had reduced tumor burden and enhanced survival than those receiving Aldh1a1-expressing sh-AhR cells. CONCLUSIONS: Aldh1a1 overactivation in an AhR-deficient background enhances melanoma progression. Since AhR may antagonize the protumoral effects of Aldh1a1, the AhR(low)-Aldh1a1(high) phenotype could be indicative of bad outcome in melanoma.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Transformación Celular Neoplásica/metabolismo , Melanoma/metabolismo , Melanoma/patología , Receptores de Hidrocarburo de Aril/metabolismo , Aldehído Deshidrogenasa/genética , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Modelos Animales de Enfermedad , Expresión Génica , Técnicas de Silenciamiento del Gen , Genes Reporteros , Humanos , Neoplasias Pulmonares/secundario , Melanoma/genética , Melanoma Experimental , Ratones , Imagen Molecular , Metástasis de la Neoplasia , Células Madre Neoplásicas/metabolismo , Receptores de Hidrocarburo de Aril/genética
8.
Exp Dermatol ; 24(11): 835-40, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26013842

RESUMEN

Skin is in daily contact with potentially harmful molecules from the environment such as cigarette smoke, automobile emissions, industrial soot and groundwater. Pregnane X receptor (PXR) is a transcription factor expressed in liver and intestine that is activated by xenobiotic chemicals including drugs and environmental pollutants. Topical application of the tumor initiator 7,12-dimethylbenz(a)anthracene (DMBA) enhances Pxr, Cyp1a1, Cyp1b1 and Cyp3a11, but not Ahr expression in the skin. Surprisingly, DMBA-induced Pxr upregulation is largely impaired in Langerin(+) cell-depleted skin, suggesting that DMBA mainly triggers Pxr in Langerin(+) cells. Furthermore, PXR deficiency protects from DNA damage in epidermal cells but to a lesser extent than aryl hydrocarbon receptor (AHR) deficiency. Interestingly, skin exposure to low doses of DMBA induces migration of PXR-deficient but not of wild-type and AHR-deficient Langerhans cells (LCs). PXR-humanized mice show a marked increase in DNA damage to epidermal cells after topical application of DMBA, demonstrating relevance of these findings in human tissue. This is the first report suggesting that carcinogens might trigger PXR in epidermal cells, particularly in LCs, thus leading to DNA damage. Further studies are required to better delineate the role of PXR in cutaneous carcinogenesis.


Asunto(s)
9,10-Dimetil-1,2-benzantraceno/toxicidad , Carcinógenos/toxicidad , Receptores de Esteroides/metabolismo , Piel/metabolismo , Animales , Movimiento Celular , Daño del ADN , Células de Langerhans/metabolismo , Ratones Endogámicos C57BL , Receptor X de Pregnano , Piel/efectos de los fármacos , Regulación hacia Arriba
9.
J Biol Chem ; 288(11): 7841-7856, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23382382

RESUMEN

Recent studies have emphasized the role of the dioxin receptor (AhR) in maintaining cell morphology, adhesion, and migration. These novel AhR functions depend on the cell phenotype, and although AhR expression maintains mesenchymal fibroblasts migration, it inhibits keratinocytes motility. These observations prompted us to investigate whether AhR modulates the epithelial-to-mesenchymal transition (EMT). For this, we have used primary AhR(+/+) and AhR(-/-) keratinocytes and NMuMG cells engineered to knock down AhR levels (sh-AhR) or to express a constitutively active receptor (CA-AhR). Both AhR(-/-) keratinocytes and sh-AhR NMuMG cells had increased migration, reduced levels of epithelial markers E-cadherin and ß-catenin, and increased expression of mesenchymal markers Snail, Slug/Snai2, vimentin, fibronectin, and α-smooth muscle actin. Consistently, AhR(+/+) and CA-AhR NMuMG cells had reduced migration and enhanced expression of epithelial markers. AhR activation by the agonist FICZ (6-formylindolo[3,2-b]carbazole) inhibited NMuMG migration, whereas the antagonist α-naphthoflavone induced migration as did AhR knockdown. Exogenous TGFß exacerbated the promigratory mesenchymal phenotype in both AhR-expressing and AhR-depleted cells, although the effects on the latter were more pronounced. Rescuing AhR expression in sh-AhR cells reduced Snail and Slug/Snai2 levels and cell migration and restored E-cadherin levels. Interference of AhR in human HaCaT cells further supported its role in EMT. Interestingly, co-immunoprecipitation and immunofluorescence assays showed that AhR associates in common protein complexes with E-cadherin and ß-catenin, suggesting the implication of AhR in cell-cell adhesion. Thus, basal or TGFß-induced AhR down-modulation could be relevant in the acquisition of a motile EMT phenotype in both normal and transformed epithelial cells.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Regulación de la Expresión Génica , Receptores de Hidrocarburo de Aril/biosíntesis , Factor de Crecimiento Transformador beta/metabolismo , Animales , Animales Recién Nacidos , Línea Celular , Movimiento Celular , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Silenciador del Gen , Homeostasis , Humanos , Queratinocitos/citología , Ratones , Ratones Transgénicos , Microscopía Fluorescente/métodos , Interferencia de ARN , Receptores de Hidrocarburo de Aril/genética , Retroviridae
10.
Genome Res ; 21(3): 422-32, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21324874

RESUMEN

Complex genomes utilize insulators and boundary elements to help define spatial and temporal gene expression patterns. We report that a genome-wide B1 SINE (Short Interspersed Nuclear Element) retrotransposon (B1-X35S) has potent intrinsic insulator activity in cultured cells and live animals. This insulation is mediated by binding of the transcription factors dioxin receptor (AHR) and SLUG (SNAI2) to consensus elements present in the SINE. Transcription of B1-X35S is required for insulation. While basal insulator activity is maintained by RNA polymerase (Pol) III transcription, AHR-induced insulation involves release of Pol III and engagement of Pol II transcription on the same strand. B1-X35S insulation is also associated with enrichment of heterochromatin marks H3K9me3 and H3K27me3 downstream of B1-X35S, an effect that varies with cell type. B1-X35S binds parylated CTCF and, consistent with a chromatin barrier activity, its positioning between two adjacent genes correlates with their differential expression in mouse tissues. Hence, B1 SINE retrotransposons represent genome-wide insulators activated by transcription factors that respond to developmental, oncogenic, or toxicological stimuli.


Asunto(s)
ARN Polimerasa III/metabolismo , ARN Polimerasa II/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Elementos de Nucleótido Esparcido Corto/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Adaptación Biológica , Animales , Células Cultivadas , Inmunoprecipitación de Cromatina , Expresión Génica , Genes Reguladores , Marcadores Genéticos , Genoma , Heterocromatina/genética , Heterocromatina/metabolismo , Humanos , Elementos Aisladores/genética , Ratones , Ratones Transgénicos , ARN Polimerasa II/genética , ARN Polimerasa III/genética , Receptores de Hidrocarburo de Aril/genética , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética , Pez Cebra
11.
Cell Commun Signal ; 12: 57, 2014 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-25238970

RESUMEN

BACKGROUND: Adhesion and migration are relevant physiological functions that must be regulated by the cell under both normal and pathological conditions. The dioxin receptor (AhR) has emerged as a transcription factor regulating both processes in mesenchymal, epithelial and endothelial cells. Indirect results suggest that AhR could cooperate not only with additional transcription factors but also with membrane-associated proteins to drive such processes. RESULTS: In this study, we have used immortalized and primary dermal fibroblasts from wild type (AhR+/+) and AhR-null (AhR-/-) mice to show that AhR modulates membrane distribution and mobilization of caveolin-1 (Cav-1) during directional cell migration. AhR co-immunoprecipitated with Cav-1 and a fraction of both proteins co-localized to detergent-resistant membrane microdomains (DRM). Consistent with a role of AhR in the process, AhR-/- cells had a significant reduction in Cav-1 in DRMs. Moreover, high cell density reduced AhR nuclear levels and moved Cav-1 from DRMs to the soluble membrane in AhR+/+ but not in AhR-/- cells. Tyrosine-14 phosphorylation had a complex role in the mechanism since its upregulation reduced Cav-1 in DRMs in both AhR+/+ and AhR-/-cells, despite the lower basal levels of Y14-Cav-1 in the null cells. Fluorescence recovery after photobleaching revealed that AhR knock-down blocked Cav-1 transport to the plasma membrane, a deficit possibly influencing its depleted levels in DRMs. Membrane distribution of Cav-1 in AhR-null fibroblasts correlated with higher levels of cholesterol and with disrupted membrane microdomains, whereas addition of exogenous cholesterol changed the Cav-1 distribution of AhR+/+ cells to the null phenotype. Consistently, higher cholesterol levels enhanced caveolae-dependent endocytosis in AhR-null cells. CONCLUSIONS: These results suggest that AhR modulates Cav-1 distribution in migrating cells through the control of cholesterol-enriched membrane microdomains. Our study also supports the likely possibility of membrane-related, transcription factor independent, functions of AhR.


Asunto(s)
Caveolina 1/metabolismo , Movimiento Celular/fisiología , Colesterol/metabolismo , Fibroblastos/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Células Cultivadas , Endocitosis , Fibroblastos/fisiología , Ratones , Ratones Noqueados , Receptores de Hidrocarburo de Aril/genética
12.
Carcinogenesis ; 34(12): 2683-93, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23843039

RESUMEN

Melanoma is a highly metastatic and malignant skin cancer having poor rates of patient survival. Since the incidence of melanoma is steadily increasing in the population, finding prognostic and therapeutic targets are crucial tasks in cancer. The dioxin receptor (AhR) is required for xenobiotic-induced toxicity and carcinogenesis and for cell physiology and organ homeostasis. Yet, the mechanisms by which AhR affects tumor growth and dissemination are largely uncharacterized. We report here that AhR contributes to the tumor-stroma interaction, blocking melanoma growth and metastasis when expressed in the tumor cell but supporting melanoma when expressed in the stroma. B16F10 cells engineered to lack AhR (small hairpin RNA for AhR) exacerbated melanoma primary tumorigenesis and lung metastasis when injected in AhR+/+ recipient mice but not when injected in AhR- /- mice or when co-injected with AhR-/- fibroblasts in an AhR+/+ stroma. Contrary, B16F10 cells expressing a constitutively active AhR had reduced tumorigenicity and invasiveness in either AhR genetic background. The tumor suppressor role of AhR in melanoma cells correlated with reduced migration and invasion, with lower numbers of cancer stem-like cells and with altered levels of ß1-integrin and caveolin1. Human melanoma cell lines with highest AHR expression also had lowest migration and invasion. Moreover, AHR expression was reduced in human melanomas with respect to nevi lesions. We conclude that AhR knockdown in melanoma cells requires stromal AhR for maximal tumor progression and metastasis. Thus, AhR can be a molecular marker in melanoma and its activity in both tumor and stromal compartments should be considered.


Asunto(s)
Melanoma/genética , Melanoma/patología , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Receptores de Hidrocarburo de Aril/genética , Proteínas Supresoras de Tumor/genética , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Caveolinas/genética , Línea Celular Tumoral , Movimiento Celular/genética , Fibroblastos/patología , Humanos , Integrina beta1/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Células Madre Neoplásicas/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
13.
Front Cell Dev Biol ; 10: 884004, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35465323

RESUMEN

Transcription factor aryl hydrocarbon receptor (AHR) has emerged as one of the main regulators involved both in different homeostatic cell functions and tumor progression. Being a member of the family of basic-helix-loop-helix (bHLH) transcriptional regulators, this intracellular receptor has become a key member in differentiation, pluripotency, chromatin dynamics and cell reprogramming processes, with plenty of new targets identified in the last decade. Besides this role in tissue homeostasis, one enthralling feature of AHR is its capacity of acting as an oncogene or tumor suppressor depending on the specific organ, tissue and cell type. Together with its well-known modulation of cell adhesion and migration in a cell-type specific manner in epithelial-mesenchymal transition (EMT), this duality has also contributed to the arise of its clinical interest, highlighting a new potential as therapeutic tool, diagnosis and prognosis marker. Therefore, a deregulation of AHR-controlled pathways may have a causal role in contributing to physiological and homeostatic failures, tumor progression and dissemination. With that firmly in mind, this review will address the remarkable capability of AHR to exert a different function influenced by the phenotype of the target cell and its potential consequences.

14.
Aging (Albany NY) ; 14(10): 4281-4304, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35619220

RESUMEN

Aging impairs organismal homeostasis leading to multiple pathologies. Yet, the mechanisms and molecular intermediates involved are largely unknown. Here, we report that aged aryl hydrocarbon receptor-null mice (AhR-/-) had exacerbated cellular senescence and more liver progenitor cells. Senescence-associated markers ß-galactosidase (SA-ß-Gal), p16Ink4a and p21Cip1 and genes encoding senescence-associated secretory phenotype (SASP) factors TNF and IL1 were overexpressed in aged AhR-/- livers. Chromatin immunoprecipitation showed that AhR binding to those gene promoters repressed their expression, thus adjusting physiological levels in AhR+/+ livers. MCP-2, MMP12 and FGF secreted by senescent cells were overproduced in aged AhR-null livers. Supporting the relationship between senescence and stemness, liver progenitor cells were overrepresented in AhR-/- mice, probably contributing to increased hepatocarcinoma burden. These AhR roles are not liver-specific since adult and embryonic AhR-null fibroblasts underwent senescence in culture, overexpressing SA-ß-Gal, p16Ink4a and p21Cip1. Notably, depletion of senescent cells with the senolytic agent navitoclax restored expression of senescent markers in AhR-/- fibroblasts, whereas senescence induction by palbociclib induced an AhR-null-like phenotype in AhR+/+ fibroblasts. AhR levels were downregulated by senescence in mouse lungs but restored upon depletion of p16Ink4a-expressing senescent cells. Thus, AhR restricts age-induced senescence associated to a differentiated phenotype eventually inducing resistance to liver tumorigenesis.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina , Receptores de Hidrocarburo de Aril , Envejecimiento/metabolismo , Animales , Senescencia Celular/fisiología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Fibroblastos/metabolismo , Hígado/metabolismo , Ratones , Receptores de Hidrocarburo de Aril/genética
15.
Sci Rep ; 12(1): 15446, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104446

RESUMEN

The liver is among the few organs having the ability to self-regenerate in response to a severe damage compromising its functionality. The Aryl hydrocarbon receptor (Ahr) is a transcription factor relevant for the detoxification of xenobiotics but also largely important for liver development and homeostasis. Hence, liver cell differentiation is developmentally modulated by Ahr through the controlled expression of pluripotency and stemness-inducing genes. Here, 2/3 partial hepatectomy (PH) was used as a clinically relevant approach to induce liver regeneration in Ahr-expressing (Ahr+/+) and Ahr-null (Ahr-/-) mice. Ahr expression and activity were early induced after 2/3 PH to be gradually downmodulated latter during regeneration. Ahr-/- mice triggered liver regeneration much faster than AhR+/+ animals, although both reached full regeneration at the latest times. At initial stages after PHx, earlier regenerating Ahr-/- livers had upregulation of cell proliferation markers and increased activation of signalling pathways related to stemness such as Hippo-YAP and Wnt/ß-catenin, concomitantly with the induction of pro-inflammatory cytokines TNFa, IL6 and p65. These phenotypes, together with the improved metabolic adaptation of Ahr-/- mice after PHx and their induced sustained cell proliferation, could likely result from the expansion of undifferentiated stem cells residing in the liver expressing OCT4, SOX2, KLF4 and NANOG. We propose that Ahr needs to be induced early during regeneration to fine-tune liver regrowth to physiological values. Since Ahr deficiency did not result in liver overgrowth, its transient pharmacological inhibition could serve to improve liver regeneration in hepatectomized and transplanted patients and in those exposed to damaging liver toxins and carcinogens.


Asunto(s)
Regeneración Hepática , Receptores de Hidrocarburo de Aril , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Diferenciación Celular , Hepatectomía , Hígado/metabolismo , Hígado/cirugía , Ratones , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo
16.
J Neurochem ; 118(1): 153-62, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21534955

RESUMEN

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a prototypical environmental contaminant with neurotoxic properties that alters neurodevelopment and behavior. TCDD is a ligand of the aryl hydrocarbon receptor (AhR), which is a key signaling molecule to fully understand the toxic and carcinogenic properties of dioxin. Much effort is underway to unravel the molecular mechanisms and the signaling pathways involved in TCDD-induced neurotoxicity, and to define its molecular targets in neurons. We have used cerebellar granule cells (CGC) from wild-type (AhR+/+) and AhR-null (AhR-/-) mice to characterize the cell death that takes place in neurons after TCDD toxicity. TCDD induced cell death in CGC cultures from wild-type mice with an EC(50) of 127±21 nM. On the contrary, when CGC neurons from AhR-null mice were treated with TCDD no significant cell death was observed. The role of AhR in TCDD-induced death was further assessed by using the antagonists resveratrol and α-naphtoflavone, which readily protected against TCDD toxicity in AhR+/+ CGC cultures. AhR+/+ CGC cultures treated with TCDD showed nuclear fragmentation, DNA laddering, and increased caspase 3 activity, similarly to what was found by the use of staurosporine, a well-established inducer of apoptosis. Finally, the AhR pathway was active in CGC because TCDD could induce the expression of the target gene cytochrome P450 1A2 in AhR+/+ CGC cultures. All together these results support the hypothesis that TCDD toxicity in CGC neurons involves the AhR and that it takes place mainly through an apoptotic process. AhR could be then considered a novel target in neurotoxicity and neurodegeneration whose down-modulation could block certain xenobiotic-related adverse effects in CNS.


Asunto(s)
Apoptosis/efectos de los fármacos , Benzofuranos/toxicidad , Cerebelo/citología , Contaminantes Ambientales/toxicidad , Neuronas/efectos de los fármacos , Receptores de Hidrocarburo de Aril/fisiología , Animales , Caspasa 3/metabolismo , Células Cultivadas , Citocromo P-450 CYP1A2/metabolismo , Relación Dosis-Respuesta a Droga , Indoles , Ratones , Ratones Noqueados , Especies Reactivas de Oxígeno , Receptores de Hidrocarburo de Aril/deficiencia , Sales de Tetrazolio , Tiazoles , Azul de Tripano
17.
Proc Natl Acad Sci U S A ; 105(5): 1632-7, 2008 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-18223155

RESUMEN

Alterations in tissue-specific gene expression greatly affect cell function. Transcription factors (TFs) interact with cis-acting binding sites in noncoding enhancer promoter regions. Transposable elements (TEs) are abundant and similarly represented among mammalian genomes. TEs are important in gene regulation, but their function is not well understood. We have characterized a TE containing functional TF-binding sites for the carcinogen-activated dioxin receptor xenobiotic responsive element (XRE) and the epithelial-mesenchymal transition regulator Slug (Slug site). A Mus promoter database was scanned for XREs to predict coregulation with other TFs. We identified an overrepresented (1,398 genes) B1 retrotransposon containing XRE and Slug sites within 35 bp of each other (designated as B1-X35S). This B1-X35S retrotransposon differed from classic B1s by the presence of the Slug site and by its differential nucleotide conservation outside the X35S region. Phylogenetically, B1-X35S appeared recently in evolution, close to the B1-B subfamily. Comparative gene expression in 61 mouse tissues revealed that B1-X35S-containing genes had lower median expression levels than those with canonical B1 TEs, suggesting a repressive role for X35S. Indeed, X35S was functional and able to bind aryl hydrocarbon (dioxin) receptor (AhR) and Slug and, importantly, to repress cis-reporter genes. Moreover, AhR and Slug were recruited to X35S in vivo and repressed the endogenous expression of X35S-containing genes. Our results demonstrate the existence of a widely present B1 subfamily in the mouse. Because AhR and Slug are relevant in tumor development and differentiation, X35S may represent a genome-wide regulatory mechanism and a tool to modulate gene expression.


Asunto(s)
Regulación de la Expresión Génica , Receptores de Hidrocarburo de Aril/metabolismo , Retroelementos , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Línea Celular Tumoral , Expresión Génica , Genoma/genética , Ratones , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Factores de Transcripción de la Familia Snail
18.
Stem Cell Reports ; 16(9): 2351-2363, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34478649

RESUMEN

Mammalian embryogenesis is a complex process controlled by transcription factors that regulate the balance between pluripotency and differentiation. Transcription factor aryl hydrocarbon receptor (AhR) regulates OCT4/POU5F1 and NANOG, both essential controllers of pluripotency, stemness and early embryo development. Molecular mechanisms controlling OCT4/POU5F1 and NANOG during embryogenesis remain unidentified. We show that AhR regulates pluripotency factors and maintains the metabolic activity required for proper embryo differentiation. AhR-lacking embryos (AhR-/-) showed a pluripotent phenotype characterized by a delayed expression of trophectoderm differentiation markers. Accordingly, central pluripotency factors OCT4/POU5F1 and NANOG were overexpressed in AhR-/- embryos at initial developmental stages. An altered intracellular localization of these factors was observed in the absence of AhR and, importantly, Oct4 had an opposite expression pattern with respect to AhR from the two-cell stage to blastocyst, suggesting a negative regulation of OCT4/POU5F by AhR. We propose that AhR is a regulator of pluripotency and differentiation in early mouse embryogenesis.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Desarrollo Embrionario/genética , Receptores de Hidrocarburo de Aril/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Embrión de Mamíferos , Metabolismo Energético , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genotipo , Glucólisis , Vía de Señalización Hippo , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Estrés Oxidativo , Transporte de Proteínas , Receptores de Hidrocarburo de Aril/metabolismo
19.
Cancers (Basel) ; 13(16)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34439225

RESUMEN

Non-small cell lung adenocarcinoma (NSCLC) bearing K-RasG12D mutations is one of the most prevalent types of lung cancer worldwide. Aryl hydrocarbon receptor (AHR) expression varies in human lung tumors and has been associated with either increased or reduced lung metastasis. In the mouse, Ahr also adjusts lung regeneration upon injury by limiting the expansion of resident stem cells. Here, we show that the loss of Ahr enhances K-RasG12D-driven NSCLC in mice through the amplification of stem cell subpopulations. Consistent with this, we show that K-RasG12D;Ahr-/- lungs contain larger numbers of cells expressing markers for both progenitor Clara (SCGB1A1 and CC10) and alveolar type-II (SFTPC) cells when compared to K-RasG12D;Ahr+/+-driven tumors. They also have elevated numbers of cells positive for pluripotent stem cells markers such as SOX2, ALDH1, EPCAM, LGR5 and PORCN. Typical pluripotency genes Nanog, Sox2 and c-Myc were also upregulated in K-RasG12D;Ahr-/- lung tumors as found by RNAseq analysis. In line with this, purified K-RasG12D/+;Ahr-/- lung cells generate larger numbers of organoids in culture that can subsequently differentiate into bronchioalveolar structures enriched in both pluripotency and stemness genes. Collectively, these data indicate that Ahr antagonizes K-RasG12D-driven NSCLC by restricting the number of cancer-initiating stem cells. They also suggest that Ahr expression might represent a good prognostic marker to determine the progression of K-RasG12D-positive NSCLC patients.

20.
J Biol Chem ; 284(37): 25135-48, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19617630

RESUMEN

Angiogenesis has key roles in development and in the progression of human diseases such as cancer. Consequently, identifying the novel markers and regulators of angiogenesis is a critical task. The dioxin receptor (AhR) contributes to vascular homeostasis and to the endothelial response to toxins, although the mechanisms involved are largely uncharacterized. Here, we show that AhR-null mice (AhR(-/-)) have impaired angiogenesis in vivo that compromises tumor xenograft growth. Aortic rings emigration experiments and RNA interference indicated that AhR(-/-) endothelial cells failed to branch and to form tube-like structures. Such a phenotype was found to be vascular endothelial growth factor (VEGF)-dependent, as AhR(-/-) aortic endothelial cells (MAECs) secreted lower amounts of active VEGF-A and their treatment with VEGF-A rescued angiogenesis in culture and in vivo. Further, the addition of anti-VEGF antibody to AhR(+/+) MAECs reduced angiogenesis. Treatment under hypoxic conditions with 2-methoxyestradiol suggested that HIF-1alpha modulates endothelial VEGF expression in an AhR-dependent manner. Importantly, AhR-null stromal myofibroblasts produced increased transforming growth factor-beta (TGFbeta) activity, which inhibited angiogenesis in human endothelial cells (HMECs) and AhR(-/-) mice, whereas the co-culture of HMECs with AhR(-/-) myofibroblasts or with their conditioned medium inhibited branching, which was restored by an anti-TGFbeta antibody. Moreover, VEGF and TGFbeta activities cooperated in modulating angiogenesis, as the addition of TGFbeta to AhR(-/-) MAECs further reduced their low basal VEGF-A activity. Thus, AhR modulates angiogenesis through a mechanism requiring VEGF activation in the endothelium and TGFbeta inactivation in the stroma. These data highlight the role of AhR in cardiovascular homeostasis and suggest that this receptor can be a novel regulator of angiogenesis during tumor development.


Asunto(s)
Endotelio/metabolismo , Neovascularización Patológica , Receptores de Hidrocarburo de Aril/deficiencia , Receptores de Hidrocarburo de Aril/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Aorta/patología , Cobalto/farmacología , Células Madre Embrionarias/citología , Fibroblastos/metabolismo , Hipoxia , Melanoma Experimental , Ratones , Trasplante de Neoplasias , Recombinación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA