RESUMEN
Dendritic cells (DCs) have a role in the development and activation of self-reactive pathogenic T cells1,2. Genetic variants that are associated with the function of DCs have been linked to autoimmune disorders3,4, and DCs are therefore attractive therapeutic targets for such diseases. However, developing DC-targeted therapies for autoimmunity requires identification of the mechanisms that regulate DC function. Here, using single-cell and bulk transcriptional and metabolic analyses in combination with cell-specific gene perturbation studies, we identify a regulatory loop of negative feedback that operates in DCs to limit immunopathology. Specifically, we find that lactate, produced by activated DCs and other immune cells, boosts the expression of NDUFA4L2 through a mechanism mediated by hypoxia-inducible factor 1α (HIF-1α). NDUFA4L2 limits the production of mitochondrial reactive oxygen species that activate XBP1-driven transcriptional modules in DCs that are involved in the control of pathogenic autoimmune T cells. We also engineer a probiotic that produces lactate and suppresses T cell autoimmunity through the activation of HIF-1α-NDUFA4L2 signalling in DCs. In summary, we identify an immunometabolic pathway that regulates DC function, and develop a synthetic probiotic for its therapeutic activation.
Asunto(s)
Enfermedades Autoinmunes , Sistema Nervioso Central , Células Dendríticas , Subunidad alfa del Factor 1 Inducible por Hipoxia , Ácido Láctico , Humanos , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/prevención & control , Autoinmunidad , Sistema Nervioso Central/citología , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/patología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/química , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ácido Láctico/metabolismo , Probióticos/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Linfocitos T/inmunología , Retroalimentación Fisiológica , Lactasa/genética , Lactasa/metabolismo , Análisis de la Célula IndividualRESUMEN
A longstanding goal has been to find an antigen-specific preventive therapy, i.e., a vaccine, for autoimmune diseases. It has been difficult to find safe ways to steer the targeting of natural regulatory antigen. Here, we show that the administration of exogenous mouse major histocompatibility complex class II protein bounding a unique galactosylated collagen type II (COL2) peptide (Aq-galCOL2) directly interacts with the antigen-specific TCR through a positively charged tag. This leads to expanding a VISTA-positive nonconventional regulatory T cells, resulting in a potent dominant suppressive effect and protection against arthritis in mice. The therapeutic effect is dominant and tissue specific as the suppression can be transferred with regulatory T cells, which downregulate various autoimmune arthritis models including antibody-induced arthritis. Thus, the tolerogenic approach described here may be a promising dominant antigen-specific therapy for rheumatoid arthritis, and in principle, for autoimmune diseases in general.
Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Animales , Ratones , Vacunas de Subunidad , Linfocitos T Reguladores , AnticuerposRESUMEN
It has proven difficult to identify the underlying genes in complex autoimmune diseases. Here, we use forward genetics to identify polymorphisms in the vitamin D receptor gene (Vdr) promoter, controlling Vdr expression and T cell activation. We isolated these polymorphisms in a congenic mouse line, allowing us to study the immunomodulatory properties of VDR in a physiological context. Congenic mice overexpressed VDR selectively in T cells, and thus did not suffer from calcemic effects. VDR overexpression resulted in an enhanced antigen-specific T cell response and more severe autoimmune phenotypes. In contrast, vitamin D3-deficiency inhibited T cell responses and protected mice from developing autoimmune arthritis. Our observations are likely translatable to humans, as Vdr is overexpressed in rheumatic joints. Genetic control of VDR availability codetermines the proinflammatory behavior of T cells, suggesting that increased presence of VDR at the site of inflammation might limit the antiinflammatory properties of its ligand.
Asunto(s)
Inflamación/genética , Receptores de Calcitriol/genética , Linfocitos T/inmunología , Animales , Regulación de la Expresión Génica/genética , Humanos , Inflamación/inmunología , Ratones , Polimorfismo Genético , Linfocitos T/metabolismo , Vitamina D/genética , Deficiencia de Vitamina D/genética , Deficiencia de Vitamina D/inmunologíaRESUMEN
B cells undergo several rounds of selection to eliminate potentially pathogenic autoreactive clones, but in contrast to T cells, evidence of positive selection of autoreactive B cells remains moot. Using unique tetramers, we traced natural autoreactive B cells (C1-B) specific for a defined triple-helical epitope on collagen type-II (COL2), constituting a sizeable fraction of the physiological B cell repertoire in mice, rats, and humans. Adoptive transfer of C1-B suppressed arthritis independently of IL10, separating them from IL10-secreting regulatory B cells. Single-cell sequencing revealed an antigen processing and presentation signature, including induced expression of CD72 and CCR7 as surface markers. C1-B presented COL2 to T cells and induced the expansion of regulatory T cells in a contact-dependent manner. CD72 blockade impeded this effect suggesting a new downstream suppressor mechanism that regulates antigen-specific T cell tolerization. Thus, our results indicate that autoreactive antigen-specific naïve B cells tolerize infiltrating T cells against self-antigens to impede the development of tissue-specific autoimmune inflammation.
Asunto(s)
Artritis , Enfermedades Autoinmunes , Humanos , Ratones , Ratas , Animales , Linfocitos T Reguladores , Interleucina-10 , AutoantígenosRESUMEN
Complex autoimmune diseases are sexually dimorphic. An interplay between predisposing genetics and sex-related factors probably controls the sex discrepancy in the immune response, but the underlying mechanisms are unclear. Here we positionally identify a polymorphic estrogen receptor binding site that regulates Cd2 expression, leading to female-specific differences in T cell-dependent mouse models of autoimmunity. Female mice with reduced Cd2 expression have impaired autoreactive T cell responses. T cells lacking Cd2 costimulation upregulate inhibitory Lag-3. These findings help explain sexual dimorphism in human autoimmunity, as we find that CD2 polymorphisms are associated with rheumatoid arthritis and 17-ß-estradiol-regulation of CD2 is conserved in human T cells. Hormonal regulation of CD2 might have implications for CD2-targeted therapy, as anti-Cd2 treatment more potently affects T cells in female mice. These results demonstrate the relevance of sex-genotype interactions, providing strong evidence for CD2 as a sex-sensitive predisposing factor in autoimmunity.