Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.157
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 181(5): 1097-1111.e12, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32442406

RESUMEN

The evolutionary features and molecular innovations that enabled plants to first colonize land are not well understood. Here, insights are provided through our report of the genome sequence of the unicellular alga Penium margaritaceum, a member of the Zygnematophyceae, the sister lineage to land plants. The genome has a high proportion of repeat sequences that are associated with massive segmental gene duplications, likely facilitating neofunctionalization. Compared with representatives of earlier diverging algal lineages, P. margaritaceum has expanded repertoires of gene families, signaling networks, and adaptive responses that highlight the evolutionary trajectory toward terrestrialization. These encompass a broad range of physiological processes and protective cellular features, such as flavonoid compounds and large families of modifying enzymes involved in cell wall biosynthesis, assembly, and remodeling. Transcriptome profiling further elucidated adaptations, responses, and selective pressures associated with the semi-terrestrial ecosystems of P. margaritaceum, where a simple body plan would be an advantage.


Asunto(s)
Desmidiales/genética , Desmidiales/metabolismo , Embryophyta/genética , Evolución Biológica , Pared Celular/genética , Pared Celular/metabolismo , Ecosistema , Evolución Molecular , Filogenia , Plantas
2.
Cell ; 172(1-2): 249-261.e12, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29328914

RESUMEN

Humans heavily rely on dozens of domesticated plant species that have been further improved through intensive breeding. To evaluate how breeding changed the tomato fruit metabolome, we have generated and analyzed a dataset encompassing genomes, transcriptomes, and metabolomes from hundreds of tomato genotypes. The combined results illustrate how breeding globally altered fruit metabolite content. Selection for alleles of genes associated with larger fruits altered metabolite profiles as a consequence of linkage with nearby genes. Selection of five major loci reduced the accumulation of anti-nutritional steroidal glycoalkaloids in ripened fruits, rendering the fruit more edible. Breeding for pink tomatoes modified the content of over 100 metabolites. The introgression of resistance genes from wild relatives in cultivars also resulted in major and unexpected metabolic changes. The study reveals a multi-omics view of the metabolic breeding history of tomato, as well as provides insights into metabolome-assisted breeding and plant biology.


Asunto(s)
Frutas/genética , Metaboloma , Metabolómica/métodos , Fitomejoramiento/métodos , Solanum lycopersicum/genética , Flavonoides/genética , Flavonoides/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Selección Artificial
3.
Plant Cell ; 36(3): 540-558, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-37956052

RESUMEN

The importance of metabolite modification and species-specific metabolic pathways has long been recognized. However, linking the chemical structure of metabolites to gene function in order to explore the genetic and biochemical basis of metabolism has not yet been reported in wheat (Triticum aestivum). Here, we profiled metabolic fragment enrichment in wheat leaves and consequently applied chemical-tag-based semi-annotated metabolomics in a genome-wide association study in accessions of wheat. The studies revealed that all 1,483 quantified metabolites have at least one known functional group whose modification is tailored in an enzyme-catalyzed manner and eventually allows efficient candidate gene mining. A Triticeae crop-specific flavonoid pathway and its underlying metabolic gene cluster were elucidated in further functional studies. Additionally, upon overexpressing the major effect gene of the cluster TraesCS2B01G460000 (TaOMT24), the pathway was reconstructed in rice (Oryza sativa), which lacks this pathway. The reported workflow represents an efficient and unbiased approach for gene mining using forward genetics in hexaploid wheat. The resultant candidate gene list contains vast molecular resources for decoding the genetic architecture of complex traits and identifying valuable breeding targets and will ultimately aid in achieving wheat crop improvement.


Asunto(s)
Estudio de Asociación del Genoma Completo , Triticum , Triticum/genética , Triticum/metabolismo , Metabolómica , Fenotipo , Redes y Vías Metabólicas/genética
4.
Plant Cell ; 36(5): 1937-1962, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38242838

RESUMEN

Plants need to acclimate to different stresses to optimize growth under unfavorable conditions. In Arabidopsis (Arabidopsis thaliana), the abundance of the chloroplast envelope protein FATTY ACID EXPORT PROTEIN1 (FAX1) decreases after the onset of low temperatures. However, how FAX1 degradation occurs and whether altered FAX1 abundance contributes to cold tolerance in plants remains unclear. The rapid cold-induced increase in RHOMBOID-LIKE PROTEASE11 (RBL11) transcript levels, the physical interaction of RBL11 with FAX1, the specific FAX1 degradation after RBL11 expression, and the absence of cold-induced FAX1 degradation in rbl11 loss-of-function mutants suggest that this enzyme is responsible for FAX1 degradation. Proteomic analyses showed that rbl11 mutants have higher levels of FAX1 and other proteins involved in membrane lipid homeostasis, suggesting that RBL11 is a key element in the remodeling of membrane properties during cold conditions. Consequently, in the cold, rbl11 mutants show a shift in lipid biosynthesis toward the eukaryotic pathway, which coincides with impaired cold tolerance. To test whether cold sensitivity is due to increased FAX1 levels, we analyzed FAX1 overexpressors. The rbl11 mutants and FAX1 overexpressor lines show superimposable phenotypic defects upon exposure to cold temperatures. Our re-sults show that the cold-induced degradation of FAX1 by RBL11 is critical for Arabidop-sis to survive cold and freezing periods.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Frío , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Ácidos Grasos/metabolismo , Proteínas de Transporte de Ácidos Grasos/genética , Mutación , Proteolisis
5.
Plant Cell ; 36(9): 3584-3610, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38842420

RESUMEN

Organic carbon fixed in chloroplasts through the Calvin-Benson-Bassham Cycle can be diverted toward different metabolic fates, including cytoplasmic and mitochondrial respiration, gluconeogenesis, and synthesis of diverse plastid metabolites via the pyruvate hub. In plants, pyruvate is principally produced via cytoplasmic glycolysis, although a plastid-targeted lower glycolytic pathway is known to exist in non-photosynthetic tissue. Here, we characterized a lower plastid glycolysis-gluconeogenesis pathway enabling the direct interconversion of glyceraldehyde-3-phosphate and phospho-enol-pyruvate in diatoms, ecologically important marine algae distantly related to plants. We show that two reversible enzymes required to complete diatom plastid glycolysis-gluconeogenesis, Enolase and bis-phosphoglycerate mutase (PGAM), originated through duplications of mitochondria-targeted respiratory isoforms. Through CRISPR-Cas9 mutagenesis, integrative 'omic analyses, and measured kinetics of expressed enzymes in the diatom Phaeodactylum tricornutum, we present evidence that this pathway diverts plastid glyceraldehyde-3-phosphate into the pyruvate hub, and may also function in the gluconeogenic direction. Considering experimental data, we show that this pathway has different roles dependent in particular on day length and environmental temperature, and show that the cpEnolase and cpPGAM genes are expressed at elevated levels in high-latitude oceans where diatoms are abundant. Our data provide evolutionary, meta-genomic, and functional insights into a poorly understood yet evolutionarily recurrent plastid metabolic pathway.


Asunto(s)
Diatomeas , Gluconeogénesis , Glucólisis , Plastidios , Diatomeas/metabolismo , Diatomeas/genética , Plastidios/metabolismo , Plastidios/genética , Glucólisis/genética , Gluconeogénesis/genética , Filogenia
6.
Plant Cell ; 36(2): 404-426, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37804096

RESUMEN

L-serine (Ser) and L-glycine (Gly) are critically important for the overall functioning of primary metabolism. We investigated the interaction of the phosphorylated pathway of Ser biosynthesis (PPSB) with the photorespiration-associated glycolate pathway of Ser biosynthesis (GPSB) using Arabidopsis thaliana PPSB-deficient lines, GPSB-deficient mutants, and crosses of PPSB with GPSB mutants. PPSB-deficient lines mainly showed retarded primary root growth. Mutation of the photorespiratory enzyme Ser-hydroxymethyltransferase 1 (SHMT1) in a PPSB-deficient background resumed primary root growth and induced a change in the plant metabolic pattern between roots and shoots. Grafting experiments demonstrated that metabolic changes in shoots were responsible for the changes in double mutant development. PPSB disruption led to a reduction in nitrogen (N) and sulfur (S) contents in shoots and a general transcriptional response to nutrient deficiency. Disruption of SHMT1 boosted the Gly flux out of the photorespiratory cycle, which increased the levels of the one-carbon (1C) metabolite 5,10-methylene-tetrahydrofolate and S-adenosylmethionine. Furthermore, disrupting SHMT1 reverted the transcriptional response to N and S deprivation and increased N and S contents in shoots of PPSB-deficient lines. Our work provides genetic evidence of the biological relevance of the Ser-Gly-1C metabolic network in N and S metabolism and in interorgan metabolic homeostasis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Serina/metabolismo , Glicina/metabolismo , Carbono/metabolismo , Nitrógeno/metabolismo , Arabidopsis/metabolismo , Redes y Vías Metabólicas/genética , Azufre/metabolismo , Desarrollo de la Planta
7.
Proc Natl Acad Sci U S A ; 121(36): e2410598121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39190344

RESUMEN

To counter the rising incidence of diabetes and to meet the daily protein needs, we created low glycemic index (GI) rice varieties with protein content (PC) surpassing 14%. In the development of recombinant inbred lines using Samba Mahsuri and IR36 amylose extender (IR36ae) as parental lines, we identified quantitative trait loci and genes associated with low GI, high amylose content (AC), and high PC. By integrating genetic techniques with classification models, this comprehensive approach identified candidate genes on chromosome 2 (qGI2.1/qAC2.1 spanning the region from 18.62 Mb to 19.95 Mb), exerting influence on low GI and high amylose. Notably, the phenotypic variant with high value was associated with the recessive allele of the starch branching enzyme 2b (sbeIIb). The genome-edited sbeIIb line confirmed low GI phenotype in milled rice grains. Further, combinations of alleles created by the highly significant SNPs from the targeted associations and epistatically interacting genes showed ultralow GI phenotypes with high amylose and high protein. Metabolomics analysis of rice with varying AC, PC, and GI revealed that the superior lines of high AC and PC, and low GI were preferentially enriched in glycolytic and amino acid metabolisms, whereas the inferior lines of low AC and PC and high GI were enriched with fatty acid metabolism. The high amylose high protein recombinant inbred line (HAHP_101) was enriched in essential amino acids like lysine. Such lines may be highly relevant for food product development to address diabetes and malnutrition.


Asunto(s)
Amilosa , Índice Glucémico , Oryza , Sitios de Carácter Cuantitativo , Oryza/genética , Oryza/metabolismo , Amilosa/metabolismo , Amilosa/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , Genoma de Planta , Enzima Ramificadora de 1,4-alfa-Glucano/genética , Enzima Ramificadora de 1,4-alfa-Glucano/metabolismo , Fenotipo , Genómica/métodos , Multiómica
8.
Plant Cell ; 35(9): 3187-3204, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37162152

RESUMEN

Biomolecular condensates are membraneless organelle-like structures that can concentrate molecules and often form through liquid-liquid phase separation. Biomolecular condensate assembly is tightly regulated by developmental and environmental cues. Although research on biomolecular condensates has intensified in the past 10 years, our current understanding of the molecular mechanisms and components underlying their formation remains in its infancy, especially in plants. However, recent studies have shown that the formation of biomolecular condensates may be central to plant acclimation to stress conditions. Here, we describe the mechanism, regulation, and properties of stress-related condensates in plants, focusing on stress granules and processing bodies, 2 of the most well-characterized biomolecular condensates. In this regard, we showcase the proteomes of stress granules and processing bodies in an attempt to suggest methods for elucidating the composition and function of biomolecular condensates. Finally, we discuss how biomolecular condensates modulate stress responses and how they might be used as targets for biotechnological efforts to improve stress tolerance.


Asunto(s)
Condensados Biomoleculares , Proteoma
9.
Plant Cell ; 35(6): 1984-2005, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36869652

RESUMEN

Plant lipids are important as alternative sources of carbon and energy when sugars or starch are limited. Here, we applied combined heat and darkness or extended darkness to a panel of ∼300 Arabidopsis (Arabidopsis thaliana) accessions to study lipid remodeling under carbon starvation. Natural allelic variation at 3-KETOACYL-COENZYME A SYNTHASE4 (KCS4), a gene encoding an enzyme involved in very long chain fatty acid (VLCFA) synthesis, underlies the differential accumulation of polyunsaturated triacylglycerols (puTAGs) under stress. Ectopic expression of KCS4 in yeast and plants proved that KCS4 is a functional enzyme localized in the endoplasmic reticulum with specificity for C22 and C24 saturated acyl-CoA. Allelic mutants and transient overexpression in planta revealed the differential role of KCS4 alleles in VLCFA synthesis and leaf wax coverage, puTAG accumulation, and biomass. Moreover, the region harboring KCS4 is under high selective pressure and allelic variation at KCS4 correlates with environmental parameters from the locales of Arabidopsis accessions. Our results provide evidence that KCS4 plays a decisive role in the subsequent fate of fatty acids released from chloroplast membrane lipids under carbon starvation. This work sheds light on both plant response mechanisms and the evolutionary events shaping the lipidome under carbon starvation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/metabolismo , Coenzima A/genética , Coenzima A/metabolismo , Oscuridad , Amigos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Grasos/metabolismo , Triglicéridos/metabolismo , Regulación de la Expresión Génica de las Plantas
10.
Plant Cell ; 35(8): 2773-2798, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37119263

RESUMEN

Rhizoctonia solani is a devastating soil-borne pathogen that seriously threatens the cultivation of economically important crops. Multiple strains with a very broad host range have been identified, but only 1 (AG1-IA, which causes rice sheath blight disease) has been examined in detail. Here, we analyzed AG4-HGI 3 originally isolated from Tartary buckwheat (Fagopyrum tataricum), but with a host range comparable to AG1-IA. Genome comparison reveals abundant pathogenicity genes in this strain. We used multiomic approaches to improve the efficiency of screening for disease resistance genes. Transcriptomes of the plant-fungi interaction identified differentially expressed genes associated with virulence in Rhizoctonia and resistance in Tartary buckwheat. Integration with jasmonate-mediated transcriptome and metabolome changes revealed a negative regulator of jasmonate signaling, cytochrome P450 (FtCYP94C1), as increasing disease resistance probably via accumulation of resistance-related flavonoids. The integration of resistance data for 320 Tartary buckwheat accessions identified a gene homolog to aspartic proteinase (FtASP), with peak expression following R. solani inoculation. FtASP exhibits no proteinase activity but functions as an antibacterial peptide that slows fungal growth. This work reveals a potential mechanism behind pathogen virulence and host resistance, which should accelerate the molecular breeding of resistant varieties in economically essential crops.


Asunto(s)
Fagopyrum , Fagopyrum/genética , Perfilación de la Expresión Génica , Virulencia/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizoctonia/genética , Rhizoctonia/metabolismo , Resistencia a la Enfermedad/genética , Multiómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA