Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36772400

RESUMEN

Zero-emission hydrogen and oxygen production are critical for the UK to reach net-zero greenhouse gasses by 2050. Electrochemical techniques such as water splitting (electrolysis) coupled with renewables energy can provide a unique approach to achieving zero emissions. Many studies exploring electrocatalysts need to "electrically wire" to their material to measure their performance, which usually involves immobilization upon a solid electrode. We demonstrate that significant differences in the calculated onset potential for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) can be observed when using screen-printed electrodes (SPEs) of differing connection lengths which are immobilized with a range of electrocatalysts. This can lead to false improvements in the reported performance of different electrocatalysts and poor comparisons between the literature. Through the use of electrochemical impedance spectroscopy, uncompensated ohmic resistance can be overcome providing more accurate Tafel analysis.

2.
Sensors (Basel) ; 22(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35591020

RESUMEN

A low-cost, scalable and reproducible approach for the mass production of screen-printed electrode (SPE) platforms that have varying percentage mass incorporations of 2D hexagonal boron nitride (2D-hBN) (2D-hBN/SPEs) is demonstrated herein. These novel 2D-hBN/SPEs are explored as a potential metal-free electrocatalysts towards oxygen reduction reactions (ORRs) within acidic media where their performance is evaluated. A 5% mass incorporation of 2D-hBN into the SPEs resulted in the most beneficial ORR catalysis, reducing the ORR onset potential by ca. 200 mV in comparison to bare/unmodified SPEs. Furthermore, an increase in the achievable current of 83% is also exhibited upon the utilisation of a 2D-hBN/SPE in comparison to its unmodified equivalent. The screen-printed fabrication approach replaces the less-reproducible and time-consuming drop-casting technique of 2D-hBN and provides an alternative approach for the large-scale manufacture of novel electrode platforms that can be utilised in a variety of applications.


Asunto(s)
Compuestos de Boro , Técnicas Electroquímicas , Electrodos , Oxígeno
3.
Food Chem ; 404(Pt B): 134653, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36327513

RESUMEN

Accurate and fast on-site detection of harmful microorganisms in food products is a key preventive step to avoid food-borne illness and product recall. In this study, screen-printed electrodes (SPEs) were functionalized via a facile strategy with surface imprinted polymers (SIPs). The SIP-coated SPEs were used in combination with the heat transfer method (HTM) for the real-time detection of Escherichia coli. The sensor was tested in buffer, with a reproducible and sensitive response that attained a limit of detection of 180 CFU/mL. Furthermore, selectivity was assessed by analyzing the sensor's response to C. sakazakii, K. pneumoniae and S. aureus as analogue strains. Finally, the device was successfully used for the detection of E. coli in spiked milk as proof-of-application, requiring no additional sample preparation. These results suggest the proposed thermal biosensor possesses the potential of becoming a tool for routine, on-site monitoring of E. coli in food safety applications.


Asunto(s)
Técnicas Biosensibles , Escherichia coli , Staphylococcus aureus , Electrodos , Técnicas Biosensibles/métodos , Productos Lácteos , Límite de Detección
4.
ACS Meas Sci Au ; 2(2): 167-176, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-36785725

RESUMEN

This manuscript provides the first report of a fully additively manufactured (AM) electrochemical cell printed all-in-one, where all the electrodes and cell are printed as one, requiring no post-assembly or external electrodes. The three-electrode cell is printed using a standard non-conductive poly(lactic acid) (PLA)-based filament for the body and commercially available conductive carbon black/PLA (CB/PLA, ProtoPasta) for the three electrodes (working, counter, and reference; WE, CE, and RE, respectively). The electrochemical performance of the cell is evaluated first against the well-known near-ideal outer-sphere redox probe hexaamineruthenium(III) chloride (RuHex), showing that the cell performs well using an AM electrode as the pseudo-RE. Electrochemical activation of the WE via chronoamperometry and NaOH provides enhanced electrochemical performances toward outer-sphere probes and for electroanalytical performance. It is shown that this activation can be completed using either an external commercial Ag|AgCl RE or through simply using the internal AM CB/PLA pseudo-RE and CE. This all-in-one electrochemical cell (AIOEC) was applied toward the well-known detection of ascorbic acid (AA) and acetaminophen (ACOP), achieving linear trends with limits of detection (LODs) of 13.6 ± 1.9 and 4.5 ± 0.9 µM, respectively. The determination of AA and ACOP in real samples from over-the-counter effervescent tablets was explored, and when analyzed individually, recoveries of 102.9 and 100.6% were achieved against UV-vis standards, respectively. Simultaneous detection of both targets was also achieved through detection in the same sample exhibiting 149.75 and 81.35% recoveries for AA and ACOP, respectively. These values differing from the originals are likely due to electrode fouling due to the AA oxidation being a surface-controlled process. The cell design produced herein is easily tunable toward different sample volumes or container shapes for various applications among aqueous electroanalytical sensing; however, it is a simple example of the capabilities of this manufacturing method. This work illustrates the next step in research synergising AM and electrochemistry, producing operational electrochemical sensing platforms in a single print, with no assembly and no requirements for exterior or commercial electrodes. Due to the flexibility, low-waste, and rapid prototyping of AM, there is scope for this work to be able to span and impact a plethora of research areas.

5.
Biosensors (Basel) ; 11(8)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34436093

RESUMEN

Robust, reliable, and affordable analytical techniques are essential for screening and monitoring food and water safety from contaminants, pathogens, and allergens that might be harmful upon consumption. Recent advances in decentralised, miniaturised, and rapid tests for health and environmental monitoring can provide an alternative solution to the classic laboratory-based analytical techniques currently utilised. Electrochemical biosensors offer a promising option as portable sensing platforms to expedite the transition from laboratory benchtop to on-site analysis. A plethora of electroanalytical sensor platforms have been produced for the detection of small molecules, proteins, and microorganisms vital to ensuring food and drink safety. These utilise various recognition systems, from direct electrochemical redox processes to biological recognition elements such as antibodies, enzymes, and aptamers; however, further exploration needs to be carried out, with many systems requiring validation against standard benchtop laboratory-based techniques to offer increased confidence in the sensing platforms. This short review demonstrates that electroanalytical biosensors already offer a sensitive, fast, and low-cost sensor platform for food and drink safety monitoring. With continued research into the development of these sensors, increased confidence in the safety of food and drink products for manufacturers, policy makers, and end users will result.


Asunto(s)
Técnicas Electroquímicas , Análisis de los Alimentos/métodos , Alérgenos , Técnicas Biosensibles , Electroquímica , Alimentos , Humanos
6.
Chem Commun (Camb) ; 57(34): 4198, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33870999

RESUMEN

Correction for 'Imaging the reactivity and width of graphene's boundary region' by Huda S. AlSalem et al., Chem. Commun., 2020, 56, 9612-9615, DOI: 10.1039/D0CC02675A.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA