Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(38): 10125-10130, 2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28864533

RESUMEN

The polycomb repressive complex 2 (PRC2) histone methyltransferase plays a central role in epigenetic regulation in development and in cancer, and hence to interrogate its role in a specific developmental transition, methods are needed for disrupting function of the complex with high temporal and spatial precision. The catalytic and substrate recognition functions of PRC2 are coupled by binding of the N-terminal helix of the Ezh2 methylase to an extended groove on the EED trimethyl lysine binding subunit. Disrupting PRC2 function can in principle be achieved by blocking this single interaction, but there are few approaches for blocking specific protein-protein interactions in living cells and organisms. Here, we describe the computational design of proteins that bind to the EZH2 interaction site on EED with subnanomolar affinity in vitro and form tight and specific complexes with EED in living cells. Induction of the EED binding proteins abolishes H3K27 methylation in human embryonic stem cells (hESCs) and at all but the earliest stage blocks self-renewal, pinpointing the first critical repressive H3K27me3 marks in development.


Asunto(s)
Simulación por Computador , Histonas/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Histonas/química , Células Madre Embrionarias Humanas/citología , Humanos , Metilación , Complejo Represivo Polycomb 2/química
2.
bioRxiv ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39416068

RESUMEN

Copy number variation (CNV) in the 16p11.2 (BP4-BP5) genomic locus is strongly associated with autism. Carriers of 16p11.2 deletion and duplication exhibit several common behavioral and social impairments, yet, show opposing brain structural changes and body mass index. To determine cellular mechanisms that might contribute to these opposing phenotypes, we performed quantitative tandem mass tag (TMT) proteomics on human dorsal forebrain neural progenitor cells (NPCs) differentiated from induced pluripotent stem cells (iPSC) derived from 16p11.2 CNV carriers. Differentially phosphorylated proteins between unaffected individuals and 16p11.2 CNV carriers were significantly enriched for centrosomal and cilia proteins. Deletion patient-derived NPCs show increased primary cilium length compared to unaffected individuals, while stunted cilium growth was observed in 16p11.2 duplication NPCs. Through cellular shRNA and overexpression screens in human iPSC derived NPCs, we determined the contribution of genes within the 16p11.2 locus to cilium length. TAOK2, a serine threonine protein kinase, and PPP4C, a protein phosphatase, were found to regulate primary cilia length in a gene dosage-dependent manner. We found TAOK2 was localized at centrosomes and the base of the primary cilium, and NPCs differentiated from TAOK2 knockout iPSCs had longer cilia. In absence of TAOK2, there was increased pericentrin at the basal body, and aberrant accumulation of IFT88 at the ciliary distal tip. Further, pharmacological inhibition of TAO kinase activity led to increased ciliary length, indicating that TAOK2 negatively controls primary cilium length through its catalytic activity. These results implicate aberrant cilia length in the pathophysiology of 16p11.2 CNV, and establish the role of TAOK2 kinase as a regulator of primary cilium length.

3.
J Cell Sci ; 124(Pt 24): 4299-308, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22193955

RESUMEN

Although much is known about interactions between bacterial endosymbionts and their hosts, little is known concerning the host factors that influence endosymbiont titer. Wolbachia endosymbionts are globally dispersed throughout most insect species and are the causative agent in filarial nematode-mediated disease. Our investigation indicates that gurken (grk), a host gene encoding a crucial axis determinant, has a cumulative, dosage-sensitive impact on Wolbachia growth and proliferation during Drosophila oogenesis. This effect appears to be mediated by grk mRNA and its protein-binding partners Squid and Hrp48/Hrb27C, implicating the grk mRNA-protein (mRNP) complex as a rate-limiting host factor controlling Wolbachia titer. Furthermore, highly infected flies exhibit defects that match those occurring with disruption of grk mRNPs, such as nurse cell chromatin disruptions and malformation of chorionic appendages. These findings suggest a feedback loop in which Wolbachia interaction with the grk mRNP affects both Wolbachia titer and grk mRNP function.


Asunto(s)
Proteínas de Drosophila/genética , Ribonucleoproteínas/fisiología , Factor de Crecimiento Transformador alfa/genética , Wolbachia/fisiología , Animales , Proteínas de Drosophila/análisis , Drosophila melanogaster/genética , Drosophila melanogaster/microbiología , Drosophila melanogaster/ultraestructura , Retroalimentación Fisiológica , Microtúbulos/fisiología , Oocitos/microbiología , Oocitos/ultraestructura , Oogénesis , Proteínas de Unión al ARN/análisis , Simbiosis , Wolbachia/ultraestructura
4.
Dev Cell ; 56(24): 3321-3333.e5, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34879262

RESUMEN

The endoplasmic reticulum (ER) depends on extensive association with the microtubule (MT) cytoskeleton for its structure and mitotic inheritance. However, mechanisms that underlie coupling of ER membranes to MTs are poorly understood. We have identified thousand and one amino acid kinase 2 (TAOK2) as a pleiotropic protein kinase that mediates tethering of ER to MTs. In human cells, TAOK2 localizes in distinct ER subdomains via transmembrane helices and an adjacent amphipathic region. Through its C-terminal tail, TAOK2 directly binds MTs, coupling ER membranes to the MT cytoskeleton. In TAOK2 knockout cells, although ER-membrane dynamics are increased, movement of ER along growing MT plus ends is disrupted. ER-MT tethering is tightly regulated by catalytic activity of TAOK2, perturbation of which leads to defects in ER morphology, association with MTs, and cell division. Our study identifies TAOK2 as an ER-MT tether and reveals a kinase-regulated mechanism for control of ER dynamics.


Asunto(s)
Biocatálisis , Retículo Endoplásmico/metabolismo , Microtúbulos/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Células HEK293 , Células HeLa , Humanos , Mitosis , Unión Proteica , Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/química , Huso Acromático/metabolismo , Molécula de Interacción Estromal 1/metabolismo
5.
Cell Cycle ; 17(5): 535-549, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29466914

RESUMEN

To easily edit the genome of naïve human embryonic stem cells (hESC), we introduced a dual cassette encoding an inducible Cas9 into the AAVS1 site of naïve hESC (iCas9). The iCas9 line retained karyotypic stability, expression of pluripotency markers, differentiation potential, and stability in 5iLA and EPS pluripotency conditions. The iCas9 line induced efficient homology-directed repair (HDR) and non-homologous end joining (NHEJ) based mutations through CRISPR-Cas9 system. We utilized the iCas9 line to study the epigenetic regulator, PRC2 in early human pluripotency. The PRC2 requirement distinguishes between early pluripotency stages, however, what regulates PRC2 activity in these stages is not understood. We show reduced H3K27me3 and pluripotency markers in JARID2 2iL-I-F hESC mutants, indicating JARID2 requirement in maintenance of hESC 2iL-I-F state. These data suggest that JARID2 regulates PRC2 in 2iL-I-F state and the lack of PRC2 function in 5iLA state may be due to lack of sufficient JARID2 protein.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica , Complejo Represivo Polycomb 2/metabolismo , Blastocisto/citología , Blastocisto/metabolismo , Autorrenovación de las Células , Reparación del ADN por Unión de Extremidades , Sitios Genéticos , Histonas/metabolismo , Células Madre Embrionarias Humanas , Humanos , Mutación INDEL , Microscopía Confocal , Fenotipo , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/deficiencia , Complejo Represivo Polycomb 2/genética , Presenilina-2/genética , Presenilina-2/metabolismo , Dominios Proteicos
6.
Nat Cell Biol ; 17(12): 1523-35, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26571212

RESUMEN

For nearly a century developmental biologists have recognized that cells from embryos can differ in their potential to differentiate into distinct cell types. Recently, it has been recognized that embryonic stem cells derived from both mice and humans exhibit two stable yet epigenetically distinct states of pluripotency: naive and primed. We now show that nicotinamide N-methyltransferase (NNMT) and the metabolic state regulate pluripotency in human embryonic stem cells (hESCs).  Specifically, in naive hESCs, NNMT and its enzymatic product 1-methylnicotinamide are highly upregulated, and NNMT is required for low S-adenosyl methionine (SAM) levels and the H3K27me3 repressive state. NNMT consumes SAM in naive cells, making it unavailable for histone methylation that represses Wnt and activates the HIF pathway in primed hESCs. These data support the hypothesis that the metabolome regulates the epigenetic landscape of the earliest steps in human development.


Asunto(s)
Diferenciación Celular , Epigénesis Genética/genética , Células Madre Embrionarias Humanas/metabolismo , Metaboloma , Animales , Western Blotting , Células Cultivadas , Células Madre Embrionarias/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Perfilación de la Expresión Génica/métodos , Técnicas de Silenciamiento del Gen , Histonas/metabolismo , Humanos , Lisina/metabolismo , Espectrometría de Masas , Metabolómica/métodos , Metilación , Ratones , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Nicotinamida N-Metiltransferasa/genética , Nicotinamida N-Metiltransferasa/metabolismo , Proteómica/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , S-Adenosilmetionina/metabolismo , Transducción de Señal
7.
Cell Stem Cell ; 14(5): 592-605, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24656769

RESUMEN

Pluripotent stem cells have distinct metabolic requirements, and reprogramming cells to pluripotency requires a shift from oxidative to glycolytic metabolism. Here, we show that this shift occurs early during reprogramming of human cells and requires hypoxia-inducible factors (HIFs) in a stage-specific manner. HIF1α and HIF2α are both necessary to initiate this metabolic switch and for the acquisition of pluripotency, and the stabilization of either protein during early phases of reprogramming is sufficient to induce the switch to glycolytic metabolism. In contrast, stabilization of HIF2α during later stages represses reprogramming, partly because of the upregulation of TNF-related apoptosis-inducing ligand (TRAIL). TRAIL inhibits induced pluripotent stem cell (iPSC) generation by repressing apoptotic caspase 3 activity specifically in cells undergoing reprogramming but not human embryonic stem cells (hESCs), and inhibiting TRAIL activity enhances human iPSC generation. These results shed light on the mechanisms underlying the metabolic shifts associated with the acquisition of a pluripotent identity during reprogramming.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Reprogramación Celular/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Caspasa 3/genética , Caspasa 3/metabolismo , Células Cultivadas , Reprogramación Celular/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Fibroblastos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , ARN Interferente Pequeño , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA