Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(1): 62-75.e17, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32946811

RESUMEN

In response to skeletal muscle contraction during exercise, paracrine factors coordinate tissue remodeling, which underlies this healthy adaptation. Here we describe a pH-sensing metabolite signal that initiates muscle remodeling upon exercise. In mice and humans, exercising skeletal muscle releases the mitochondrial metabolite succinate into the local interstitium and circulation. Selective secretion of succinate is facilitated by its transient protonation, which occurs upon muscle cell acidification. In the protonated monocarboxylic form, succinate is rendered a transport substrate for monocarboxylate transporter 1, which facilitates pH-gated release. Upon secretion, succinate signals via its cognate receptor SUCNR1 in non-myofibrillar cells in muscle tissue to control muscle-remodeling transcriptional programs. This succinate-SUCNR1 signaling is required for paracrine regulation of muscle innervation, muscle matrix remodeling, and muscle strength in response to exercise training. In sum, we define a bioenergetic sensor in muscle that utilizes intracellular pH and succinate to coordinate tissue adaptation to exercise.


Asunto(s)
Músculo Esquelético/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ácido Succínico/metabolismo , Animales , Humanos , Concentración de Iones de Hidrógeno , Inflamación/metabolismo , Ratones , Mitocondrias/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Contracción Muscular , Receptores Acoplados a Proteínas G/fisiología , Transducción de Señal , Succinatos/metabolismo , Simportadores/metabolismo
2.
J Bioenerg Biomembr ; 56(2): 87-99, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38374292

RESUMEN

High-fat diet-induced metabolic changes are not restricted to the onset of cardiovascular diseases, but also include effects on brain functions related to learning and memory. This study aimed to evaluate mitochondrial markers and function, as well as cognitive function, in a rat model of metabolic dysfunction. Eight-week-old male Wistar rats were subjected to either a control diet or a two-hit protocol combining a high fat diet (HFD) with the nitric oxide synthase inhibitor L-NAME in the drinking water. HFD plus L-NAME induced obesity, hypertension, and increased serum cholesterol. These rats exhibited bioenergetic dysfunction in the hippocampus, characterized by decreased oxygen (O2) consumption related to ATP production, with no changes in H2O2 production. Furthermore, OPA1 protein expression was upregulated in the hippocampus of HFD + L-NAME rats, with no alterations in other morphology-related proteins. Consistently, HFD + L-NAME rats showed disruption of performance in the Morris Water Maze Reference Memory test. The neocortex did not exhibit either bioenergetic changes or alterations in H2O2 production. Calcium uptake rate and retention capacity in the neocortex of HFD + L-NAME rats were not altered. Our results indicate that hippocampal mitochondrial bioenergetic function is disturbed in rats exposed to a HFD plus L-NAME, thus disrupting spatial learning, whereas neocortical function remains unaffected.


Asunto(s)
Dieta Alta en Grasa , Memoria Espacial , Ratas , Animales , Masculino , Dieta Alta en Grasa/efectos adversos , Ratas Wistar , NG-Nitroarginina Metil Éster/farmacología , NG-Nitroarginina Metil Éster/metabolismo , Peróxido de Hidrógeno/metabolismo , Aprendizaje por Laberinto , Hipocampo/metabolismo , Mitocondrias/metabolismo
3.
Eur Heart J ; 44(44): 4696-4712, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37944136

RESUMEN

BACKGROUND AND AIMS: Developing novel therapies to battle the global public health burden of heart failure remains challenging. This study investigates the underlying mechanisms and potential treatment for 4-hydroxynonenal (4-HNE) deleterious effects in heart failure. METHODS: Biochemical, functional, and histochemical measurements were applied to identify 4-HNE adducts in rat and human failing hearts. In vitro studies were performed to validate 4-HNE targets. RESULTS: 4-HNE, a reactive aldehyde by-product of mitochondrial dysfunction in heart failure, covalently inhibits Dicer, an RNase III endonuclease essential for microRNA (miRNA) biogenesis. 4-HNE inhibition of Dicer impairs miRNA processing. Mechanistically, 4-HNE binds to recombinant human Dicer through an intermolecular interaction that disrupts both activity and stability of Dicer in a concentration- and time-dependent manner. Dithiothreitol neutralization of 4-HNE or replacing 4-HNE-targeted residues in Dicer prevents 4-HNE inhibition of Dicer in vitro. Interestingly, end-stage human failing hearts from three different heart failure aetiologies display defective 4-HNE clearance, decreased Dicer activity, and miRNA biogenesis impairment. Notably, boosting 4-HNE clearance through pharmacological re-activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2) using Alda-1 or its improved orally bioavailable derivative AD-9308 restores Dicer activity. ALDH2 is a major enzyme responsible for 4-HNE removal. Importantly, this response is accompanied by improved miRNA maturation and cardiac function/remodelling in a pre-clinical model of heart failure. CONCLUSIONS: 4-HNE inhibition of Dicer directly impairs miRNA biogenesis in heart failure. Strikingly, decreasing cardiac 4-HNE levels through pharmacological ALDH2 activation is sufficient to re-establish Dicer activity and miRNA biogenesis; thereby representing potential treatment for patients with heart failure.


Asunto(s)
Insuficiencia Cardíaca , MicroARNs , Humanos , Ratas , Animales , MicroARNs/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Aldehídos/metabolismo , Aldehídos/farmacología , Procesamiento Proteico-Postraduccional , Aldehído Deshidrogenasa Mitocondrial/genética
4.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36835047

RESUMEN

In clinical conditions such as diaphragm paralysis or mechanical ventilation, disuse-induced diaphragmatic dysfunction (DIDD) is a condition that poses a threat to life. MuRF1 is a key E3-ligase involved in regulating skeletal muscle mass, function, and metabolism, which contributes to the onset of DIDD. We investigated if the small-molecule mediated inhibition of MuRF1 activity (MyoMed-205) protects against early DIDD after 12 h of unilateral diaphragm denervation. Wistar rats were used in this study to determine the compound's acute toxicity and optimal dosage. For potential DIDD treatment efficacy, diaphragm contractile function and fiber cross-sectional area (CSA) were evaluated. Western blotting investigated potential mechanisms underlying MyoMed-205's effects in early DIDD. Our results indicate 50 mg/kg bw MyoMed-205 as a suitable dosage to prevent early diaphragmatic contractile dysfunction and atrophy following 12 h of denervation without detectable signs of acute toxicity. Mechanistically, treatment did not affect disuse-induced oxidative stress (4-HNE) increase, whereas phosphorylation of (ser632) HDAC4 was normalized. MyoMed-205 also mitigated FoxO1 activation, inhibited MuRF2, and increased phospho (ser473) Akt protein levels. These findings may suggest that MuRF1 activity significantly contributes to early DIDD pathophysiology. Novel strategies targeting MuRF1 (e.g., MyoMed-205) have potential therapeutic applications for treating early DIDD.


Asunto(s)
Diafragma , Atrofia Muscular , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Animales , Ratas , Diafragma/metabolismo , Diafragma/patología , Atrofia Muscular/metabolismo , Estrés Oxidativo , Ratas Wistar , Respiración Artificial/efectos adversos , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Motivos Tripartitos/antagonistas & inhibidores , Proteínas de Motivos Tripartitos/metabolismo
5.
FASEB J ; 35(7): e21714, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34118107

RESUMEN

We tested the hypothesis that cancer cachexia progression would induce oxidative post-translational modifications (Ox-PTMs) associated with skeletal muscle wasting, with different responses in muscles with the prevalence of glycolytic and oxidative fibers. We used cysteine-specific isotopic coded affinity tags (OxICAT) and gel-free mass spectrometry analysis to investigate the cysteine Ox-PTMs profile in the proteome of both plantaris (glycolytic) and soleus (oxidative) muscles in tumor-bearing and control rats. Histological analysis revealed muscle atrophy in type II fibers in plantaris muscle, with no changes in plantaris type I fibers and no differences in both soleus type I and II fibers in tumor-bearing rats when compared to healthy controls. Tumor progression altered the Ox-PTMs profile in both plantaris and soleus. However, pathway analysis including the differentially oxidized proteins revealed tricarboxylic acid cycle and oxidative phosphorylation as main affected pathways in plantaris muscle from tumor-bearing rats, while the same analysis did not show main metabolic pathways affected in the soleus muscle. In addition, cancer progression affected several metabolic parameters such as ATP levels and markers of oxidative stress associated with muscle atrophy in plantaris muscle, but not in soleus. However, isolated soleus from tumor-bearing rats had a reduced force production capacity when compared to controls. These novel findings demonstrate that tumor-bearing rats have severe muscle atrophy exclusively in glycolytic fibers. Cancer progression is associated with cysteine Ox-PTMs in the skeletal muscle, but these modifications affect different pathways in a glycolytic muscle compared to an oxidative muscle, indicating that intrinsic muscle oxidative capacity determines the response to cancer cachectic effects.


Asunto(s)
Músculo Esquelético/patología , Atrofia Muscular/patología , Neoplasias/patología , Estrés Oxidativo/fisiología , Animales , Caquexia/patología , Progresión de la Enfermedad , Glucólisis/fisiología , Masculino , Fibras Musculares de Contracción Rápida/patología , Fibras Musculares de Contracción Lenta/patología , Oxidación-Reducción , Fosforilación Oxidativa , Ratas , Ratas Wistar
6.
FASEB J ; 34(4): 5628-5641, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32112488

RESUMEN

ß2 -adrenoceptor agonists improve autophagy and re-establish proteostasis in cardiac cells; therefore, suggesting autophagy as a downstream effector of ß2 -adrenoceptor signaling pathway. Here, we used the pharmacological and genetic tools to determine the autophagy effect of sustained ß2 -adrenoceptor activation in rodents with neurogenic myopathy, which display impaired skeletal muscle autophagic flux. Sustained ß2 -adrenoceptor activation using Formoterol (10 µg kg-1  day-1 ), starting at the onset of neurogenic myopathy, prevents disruption of autophagic flux in skeletal muscle 14 days after sciatic nerve constriction. These changes are followed by reduction of the cytotoxic protein levels and increased skeletal muscle cross-sectional area and contractility properties. Of interest, sustained administration of Formoterol at lower concentration (1 µg kg-1  day-1 ) induces similar improvements in skeletal muscle autophagic flux and contractility properties in neurogenic myopathy, without affecting the cross-sectional area. Sustained pharmacological inhibition of autophagy using Chloroquine (50 mg kg-1  day-1 ) abolishes the beneficial effects of ß2 -adrenoceptor activation on the skeletal muscle proteostasis and contractility properties in neurogenic myopathy. Further supporting an autophagy mechanism for ß2 -adrenoceptor activation, skeletal muscle-specific deletion of ATG7 blunts the beneficial effects of ß2 -adrenoceptor on skeletal muscle proteostasis and contractility properties in neurogenic myopathy in mice. These findings suggest autophagy as a critical downstream effector of ß2 -adrenoceptor signaling pathway in skeletal muscle.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/farmacología , Autofagia , Músculo Esquelético/patología , Enfermedades Musculares/prevención & control , Proteostasis , Receptores Adrenérgicos beta 2/metabolismo , Animales , Fumarato de Formoterol , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Muscular , Músculo Esquelético/metabolismo , Enfermedades Musculares/etiología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos beta 2/química , Transducción de Señal
7.
Cell Physiol Biochem ; 54(6): 1199-1217, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33252886

RESUMEN

BACKGROUND/AIMS: Obesity is a risk factor associated with cardiometabolic complications. Recently, we reported that miRNA-22 deletion attenuated high-fat diet-induced adiposity and prevented dyslipidemia without affecting cardiac hypertrophy in male mice. In this study, we examined the impact of miRNA-22 in obesogenic diet-induced cardiovascular and metabolic disorders in females. METHODS: Wild type (WT) and miRNA-22 knockout (miRNA-22 KO) females were fed a control or an obesogenic diet. Body weight gain, adiposity, glucose tolerance, insulin tolerance, and plasma levels of total cholesterol and triglycerides were measured. Cardiac and white adipose tissue remodeling was assessed by histological analyses. Echocardiography was used to evaluate cardiac function and morphology. RNA-sequencing analysis was employed to characterize mRNA expression profiles in female hearts. RESULTS: Loss of miRNA-22 attenuated body weight gain, adiposity, and prevented obesogenic diet-induced insulin resistance and dyslipidemia in females. WT obese females developed cardiac hypertrophy. Interestingly, miRNA-22 KO females displayed cardiac hypertrophy without left ventricular dysfunction and myocardial fibrosis. Both miRNA-22 deletion and obesogenic diet changed mRNA expression profiles in female hearts. Enrichment analysis revealed that genes associated with regulation of the force of heart contraction, protein folding and fatty acid oxidation were enriched in hearts of WT obese females. In addition, genes related to thyroid hormone responses, heart growth and PI3K signaling were enriched in hearts of miRNA-22 KO females. Interestingly, miRNA-22 KO obese females exhibited reduced mRNA levels of Yap1, Egfr and Tgfbr1 compared to their respective controls. CONCLUSION: This study reveals that miRNA-22 deletion induces cardiac hypertrophy in females without affecting myocardial function. In addition, our findings suggest miRNA-22 as a potential therapeutic target to treat obesity-related metabolic disorders in females.


Asunto(s)
Cardiomegalia , Dieta Alta en Grasa/efectos adversos , Eliminación de Gen , Enfermedades Metabólicas , MicroARNs/genética , Miocardio , Obesidad , Animales , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patología , Femenino , Enfermedades Metabólicas/inducido químicamente , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Miocardio/metabolismo , Miocardio/patología , Obesidad/inducido químicamente , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología
8.
FASEB J ; 33(11): 11857-11869, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31365836

RESUMEN

The deleterious effects of statins on skeletal muscle are well known, but the mechanism associated with these effects remains unresolved. Statins are associated with mitochondrial damage, which may contribute to muscle myopathy. Here we demonstrate that simvastatin induces mitophagy in skeletal muscle cells and hypothesized that attenuating this process by silencing the mitophagy adapter p62/sequestosome-1 (SQSTM1) might mitigate myotoxicity. Surprisingly, silencing p62/SQSTM1 in differentiated C2C12 muscle cells exacerbated rather than attenuated myotoxicity. This inhibition of mitophagy in the face of statin challenge correlated with increased release of cytochrome c to the cytosol, activation of caspase-3, and lactate dehydrogenase (LDH) release. Correspondingly, targeted knockdown of Parkin, a canonical E3 ubiquitin ligase important for mitophagy, mirrored the effects of p62/SQSTM1 silencing. To corroborate these findings in vivo, we treated Parkin knockout mice with simvastatin for 2 wk. In line with our findings in vitro, these mitophagy-compromised mice displayed reduced spontaneous activity, loss of grip strength, and increased circulating levels of muscle damage marker LDH. Our findings demonstrate that mitophagy is an important mechanism to resist statin-induced skeletal muscle damage.-Ramesh, M., Campos, J. C., Lee, P., Song, Y., Hernandez, G., Sin, J., Tucker, K. C., Saadaeijahromi, H., Gurney, M., Ferreira, J. C. B., Andres, A. M. Mitophagy protects against statin-mediated skeletal muscle toxicity.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Mitofagia/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Proteína Sequestosoma-1/metabolismo , Simvastatina/farmacología , Animales , Caspasa 3/metabolismo , Línea Celular , Citocromos c/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Ratones Noqueados , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Interferencia de ARN , Proteína Sequestosoma-1/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
9.
J Cell Physiol ; 234(6): 9399-9407, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30362585

RESUMEN

Several studies have shown the role of microRNAs (miRNAs) in myocardial dysfunction in response to ischemia/reperfusion (I/R). In this study, we investigated the impact of high fat (HF) diet in the myocardial susceptibility to I/R injury, as well as in the expression of miRNA-29b. Isolated heart experiments using the ex vivo Langendorff perfusion model were used to induce cardiac I/R injury. HF diet-induced cardiac hypertrophy and impaired cardiac functional recovery after I/R. miRNA-29b, which targets Col1, was reduced in the heart of HF diet-fed mice, whereas the cardiac expression of Col1 was increased. In addition, hypoxia-reoxygenation (H/R) reduced the expression of miRNA-29b in cardiomyoblasts cultures. However, the overexpression of miRNA-29b in cardiomyoblasts reduced p53 mRNA levels and H/R injury, suggesting that downregulation of miRNA-29b may be involved in I/R injury. Together, our findings suggest that the reduced expression of miRNA-29b may be involved in the deteriorated cardiac functional recovery following I/R in obese mice.


Asunto(s)
Dieta Alta en Grasa , MicroARNs/genética , Daño por Reperfusión Miocárdica/genética , Miocardio/metabolismo , Miocardio/patología , Animales , Peso Corporal , Línea Celular , Colágeno/genética , Colágeno/metabolismo , Dislipidemias/complicaciones , Dislipidemias/patología , Intolerancia a la Glucosa/complicaciones , Intolerancia a la Glucosa/patología , Pruebas de Función Cardíaca , Hipoxia/complicaciones , Hipoxia/genética , Hipoxia/patología , L-Lactato Deshidrogenasa/metabolismo , Masculino , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Daño por Reperfusión Miocárdica/complicaciones , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología
10.
Adv Exp Med Biol ; 1193: 53-67, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31368097

RESUMEN

Aldehyde dehydrogenase 2 (ALDH2) is a non-cytochrome P450 mitochondrial aldehyde oxidizing enzyme. It is best known for its role in the metabolism of acetaldehyde, a common metabolite from alcohol drinking. More evidences have been accumulated in recent years to indicate a greater role of ALDH2 in the metabolism of other endogenous and exogenous aldehydes, especially lipid peroxidation-derived reactive aldehyde under oxidative stress. Many cardiovascular diseases are associated with oxidative stress and mitochondria dysfunction. Considering that an estimated 560 million East Asians carry a common ALDH2 deficient variant which causes the well-known alcohol flushing syndrome due to acetaldehyde accumulation, the importance of understanding the role of ALDH2 in these diseases should be highlighted. There are several unfavorable cardiovascular conditions that are associated with ALDH2 deficiency. This chapter reviews the function of ALDH2 in various pathological conditions of the heart in relation to aldehyde toxicity. It also highlights the importance and clinical implications of interaction between ALDH2 deficiency and alcohol drinking on cardiovascular disease among the East Asians.


Asunto(s)
Acetaldehído/efectos adversos , Consumo de Bebidas Alcohólicas , Aldehído Deshidrogenasa Mitocondrial/genética , Enfermedades Cardiovasculares/genética , Pueblo Asiatico , Humanos
11.
Annu Rev Pharmacol Toxicol ; 55: 107-27, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25292432

RESUMEN

Asian Americans are one of the fastest-growing populations in the United States. A relatively large subset of this population carries a unique loss-of-function point mutation in aldehyde dehydrogenase 2 (ALDH2), ALDH2*2. Found in approximately 560 million people of East Asian descent, ALDH2*2 reduces enzymatic activity by approximately 60% to 80% in heterozygotes. Furthermore, this variant is associated with a higher risk for several diseases affecting many organ systems, including a particularly high incidence relative to the general population of esophageal cancer, myocardial infarction, and osteoporosis. In this review, we discuss the pathophysiology associated with the ALDH2*2 variant, describe why this variant needs to be considered when selecting drug treatments, and suggest a personalized medicine approach for Asian American carriers of this variant. We also discuss future clinical and translational perspectives regarding ALDH2*2 research.


Asunto(s)
Aldehído Deshidrogenasa/genética , Asiático/genética , Farmacogenética/métodos , Mutación Puntual , Medicina de Precisión , Aldehído Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa Mitocondrial , Animales , Análisis Mutacional de ADN , Técnicas de Apoyo para la Decisión , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/enzimología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etnología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/genética , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Humanos , Seguridad del Paciente , Selección de Paciente , Farmacocinética , Fenotipo , Valor Predictivo de las Pruebas , Medición de Riesgo , Factores de Riesgo
12.
J Biol Chem ; 291(26): 13608-21, 2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27129213

RESUMEN

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an important glycolytic enzyme, has a non-catalytic (thus a non-canonical) role in inducing mitochondrial elimination under oxidative stress. We recently demonstrated that phosphorylation of GAPDH by δ protein kinase C (δPKC) inhibits this GAPDH-dependent mitochondrial elimination. δPKC phosphorylation of GAPDH correlates with increased cell injury following oxidative stress, suggesting that inhibiting GAPDH phosphorylation should decrease cell injury. Using rational design, we identified pseudo-GAPDH (ψGAPDH) peptide, an inhibitor of δPKC-mediated GAPDH phosphorylation that does not inhibit the phosphorylation of other δPKC substrates. Unexpectedly, ψGAPDH decreased mitochondrial elimination and increased cardiac damage in an animal model of heart attack. Either treatment with ψGAPDH or direct phosphorylation of GAPDH by δPKC decreased GAPDH tetramerization, which corresponded to reduced GAPDH glycolytic activity in vitro and ex vivo Taken together, our study identified the potential mechanism by which oxidative stress inhibits the protective GAPDH-mediated elimination of damaged mitochondria. Our study also identified a pharmacological tool, ψGAPDH peptide, with interesting properties. ψGAPDH peptide is an inhibitor of the interaction between δPKC and GAPDH and of the resulting phosphorylation of GAPDH by δPKC. ψGAPDH peptide is also an inhibitor of GAPDH oligomerization and thus an inhibitor of GAPDH glycolytic activity. Finally, we found that ψGAPDH peptide is an inhibitor of the elimination of damaged mitochondria. We discuss how this unique property of increasing cell damage following oxidative stress suggests a potential use for ψGAPDH peptide-based therapy.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/antagonistas & inhibidores , Glucólisis/efectos de los fármacos , Péptidos/farmacología , Proteína Quinasa C-delta/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Glucólisis/fisiología , Humanos , Masculino , Ratones , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Proteína Quinasa C-delta/genética , Multimerización de Proteína/efectos de los fármacos , Ratas , Ratas Wistar , Pez Cebra
13.
Pharmacol Res ; 115: 96-106, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27876411

RESUMEN

Peripheral artery disease (PAD) is a multifactorial disease initially triggered by reduced blood supply to the lower extremities due to atherosclerotic obstructions. It is considered a major public health problem worldwide, affecting over 200 million people. Management of PAD includes smoking cessation, exercise, statin therapy, antiplatelet therapy, antihypertensive therapy and surgical intervention. Although these pharmacological and non-pharmacological interventions usually increases blood flow to the ischemic limb, morbidity and mortality associated with PAD continue to increase. This scenario raises new fundamental questions regarding the contribution of intrinsic metabolic changes in the distal affected skeletal muscle to the progression of PAD. Recent evidence suggests that disruption of skeletal muscle mitochondrial quality control triggered by intermittent ischemia-reperfusion injury is associated with increased morbidity in individuals with PAD. The mitochondrial quality control machinery relies on surveillance systems that help maintaining mitochondrial homeostasis upon stress. In this review, we describe some of the most critical mechanisms responsible for the impaired skeletal muscle mitochondrial quality control in PAD. We also discuss recent findings on the central role of mitochondrial bioenergetics and quality control mechanisms including mitochondrial fusion-fission balance, turnover, oxidative stress and aldehyde metabolism in the pathophysiology of PAD, and highlight their potential as therapeutic targets.


Asunto(s)
Mitocondrias/efectos de los fármacos , Enfermedad Arterial Periférica/tratamiento farmacológico , Preparaciones Farmacéuticas/administración & dosificación , Animales , Metabolismo Energético/efectos de los fármacos , Humanos , Músculo Esquelético/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico
15.
J Biol Chem ; 288(26): 18947-60, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23653351

RESUMEN

After cardiac ischemia and reperfusion or reoxygenation (I/R), damaged mitochondria propagate tissue injury by promoting cell death. One possible mechanism to protect from I/R-induced injury is the elimination of damaged mitochondria by mitophagy. Here we identify new molecular events that lead to mitophagy using a cell culture model and whole hearts subjected to I/R. We found that I/R induces glyceraldehyde-3-phosphate dehydrogenase (GAPDH) association with mitochondria and promotes direct uptake of damaged mitochondria into multiorganellar lysosomal-like (LL) structures for elimination independently of the macroautophagy pathway. We also found that protein kinase C δ (PKCδ) inhibits GAPDH-driven mitophagy by phosphorylating the mitochondrially associated GAPDH at threonine 246 following I/R. Phosphorylated GAPDH promotes the accumulation of mitochondria at the periphery of LL structures, which coincides with increased mitochondrial permeability. Either inhibition of PKCδ or expression of a phosphorylation-defective GAPDH mutant during I/R promotes a reduction in mitochondrial mass and apoptosis, thus indicating rescued mitophagy. Taken together, we identified a GAPDH/PKCδ signaling switch, which is activated during oxidative stress to regulate the balance between cell survival by mitophagy and cell death due to accumulation of damaged mitochondria.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Isquemia/metabolismo , Lisosomas/metabolismo , Mitocondrias/metabolismo , Proteína Quinasa C-delta/metabolismo , Animales , Apoptosis , Proteína 5 Relacionada con la Autofagia , Línea Celular , Supervivencia Celular , Células Cultivadas , Fibroblastos/metabolismo , Células HEK293 , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/genética , Oxígeno/metabolismo , Permeabilidad , Transporte de Proteínas , Daño por Reperfusión/metabolismo , Transducción de Señal , Transgenes
16.
Nat Cardiovasc Res ; 3(8): 987-1002, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39196031

RESUMEN

Cardiac troponin I (cTnI) is a key regulator of cardiomyocyte contraction. However, its role in mitochondria is unknown. Here we show that cTnI localized to mitochondria in the heart, inhibited mitochondrial functions when stably expressed in noncardiac cells and increased the opening of the mitochondrial permeability transition pore under oxidative stress. Direct, specific and saturable binding of cTnI to F1FO-ATP synthase was demonstrated in vitro using immune-captured ATP synthase and in cells using proximity ligation assay. cTnI binding doubled ATPase activity, whereas skeletal troponin I and several human pathogenic cTnI variants associated with familial hypertrophic cardiomyopathy did not. A rationally designed peptide, P888, inhibited cTnI binding to ATP synthase, inhibited cTnI-induced increase in ATPase activity in vitro and reduced cardiac injury following transient ischemia in vivo. We suggest that cTnI-bound ATP synthase results in lower ATP levels, and releasing this interaction during cardiac ischemia-reperfusion may increase the reservoir of functional mitochondria to reduce cardiac injury.


Asunto(s)
Mitocondrias Cardíacas , ATPasas de Translocación de Protón Mitocondriales , Troponina I , Animales , Humanos , Masculino , Ratones , Ratas , Adenosina Trifosfato/metabolismo , Modelos Animales de Enfermedad , Células HEK293 , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Isquemia Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Estrés Oxidativo/efectos de los fármacos , Unión Proteica , Troponina I/metabolismo
17.
Circ J ; 76(1): 15-21, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22040938

RESUMEN

Acute myocardial infarction (MI) and its sequelae are leading causes of morbidity and mortality worldwide. Nitroglycerin (glyceryl trinitrate [GTN]) remains a first-line treatment for angina pectoris and acute MI. Nitroglycerin achieves its benefit by giving rise to nitric oxide (NO), which causes vasodilation and increases blood flow to the myocardium. However, continuous delivery of GTN results in tolerance, limiting the use of this drug. Nitroglycerin tolerance is caused, at least in part, by inactivation of aldehyde dehydrogenase 2 (ALDH2), an enzyme that converts GTN to the vasodilator, NO. We recently found that in a MI model in animals, in addition to GTN's effect on the vasculature, sustained treatment negatively affected cardiomyocyte viability following ischemia, thus resulting in increased infarct size. Coadministration of Alda-1, an activator of ALDH2, with GTN improves metabolism of reactive aldehyde adducts and prevents the GTN-induced increase in cardiac dysfunction following MI. In this review, we describe the molecular mechanisms associated with the benefits and risks of GTN administration in MI.


Asunto(s)
Tolerancia a Medicamentos/fisiología , Infarto del Miocardio/tratamiento farmacológico , Nitroglicerina/uso terapéutico , Vasodilatadores/uso terapéutico , Aldehído Deshidrogenasa/fisiología , Aldehído Deshidrogenasa Mitocondrial , Animales , Supervivencia Celular/efectos de los fármacos , Humanos , Modelos Animales , Infarto del Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Nitroglicerina/efectos adversos , Nitroglicerina/farmacología , Vasodilatadores/efectos adversos , Vasodilatadores/farmacología
18.
Pharmaceuticals (Basel) ; 15(3)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35337069

RESUMEN

Myocardial infarction is the leading cause of cardiovascular mortality, with myocardial injury occurring during ischemia and subsequent reperfusion (IR). We previously showed that the inhibition of protein kinase C delta (δPKC) with a pan-inhibitor (δV1-1) mitigates myocardial injury and improves mitochondrial function in animal models of IR, and in humans with acute myocardial infarction, when treated at the time of opening of the occluded blood vessel, at reperfusion. Cardiac troponin I (cTnI), a key sarcomeric protein in cardiomyocyte contraction, is phosphorylated by δPKC during reperfusion. Here, we describe a rationally-designed, selective, high-affinity, eight amino acid peptide that inhibits cTnI's interaction with, and phosphorylation by, δPKC (ψTnI), and prevents tissue injury in a Langendorff model of myocardial infarction, ex vivo. Unexpectedly, we also found that this treatment attenuates IR-induced mitochondrial dysfunction. These data suggest that δPKC phosphorylation of cTnI is critical in IR injury, and that a cTnI/δPKC interaction inhibitor should be considered as a therapeutic target to reduce cardiac injury after myocardial infarction.

19.
Autophagy ; 18(10): 2397-2408, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35220898

RESUMEN

Mutations in the mitochondrial genome (mtDNA) are ubiquitous in humans and can lead to a broad spectrum of disorders. However, due to the presence of multiple mtDNA molecules in the cell, co-existence of mutant and wild-type mtDNAs (termed heteroplasmy) can mask disease phenotype unless a threshold of mutant molecules is reached. Importantly, the mutant mtDNA level can change across lifespan as mtDNA segregates in an allele- and cell-specific fashion, potentially leading to disease. Segregation of mtDNA is mainly evident in hepatic cells, resulting in an age-dependent increase of mtDNA variants, including non-synonymous potentially deleterious mutations. Here we modeled mtDNA segregation using a well-established heteroplasmic mouse line with mtDNA of NZB/BINJ and C57BL/6N origin on a C57BL/6N nuclear background. This mouse line showed a pronounced age-dependent NZB mtDNA accumulation in the liver, thus leading to enhanced respiration capacity per mtDNA molecule. Remarkably, liver-specific atg7 (autophagy related 7) knockout abolished NZB mtDNA accumulat ion, resulting in close-to-neutral mtDNA segregation through development into adulthood. prkn (parkin RBR E3 ubiquitin protein ligase) knockout also partially prevented NZB mtDNA accumulation in the liver, but to a lesser extent. Hence, we propose that age-related liver mtDNA segregation is a consequence of macroautophagic clearance of the less-fit mtDNA. Considering that NZB/BINJ and C57BL/6N mtDNAs have a level of divergence comparable to that between human Eurasian and African mtDNAs, these findings have potential implications for humans, including the safe use of mitochondrial replacement therapy.Abbreviations: Apob: apolipoprotein B; Atg1: autophagy-related 1; Atg7: autophagy related 7; Atp5a1: ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1; BL6: C57BL/6N mouse strain; BNIP3: BCL2/adenovirus E1B interacting protein 3; FCCP: carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; MAP1LC3A: microtubule-associated protein 1 light chain 3 alpha; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; mt-Atp8: mitochondrially encoded ATP synthase 8; MT-CO1: mitochondrially encoded cytochrome c oxidase I; MT-CO2: mitochondrially encoded cytochrome c oxidase II; mt-Co3: mitochondrially encoded cytochrome c oxidase III; mt-Cytb: mitochondrially encoded cytochrome b; mtDNA: mitochondrial DNA; MUL1: mitochondrial ubiquitin ligase activator of NFKB 1; nDNA: nuclear DNA; Ndufa9: NADH:ubiquinone oxireductase subunit A9; NDUFB8: NADH:ubiquinone oxireductase subunit B8; Nnt: nicotinamide nucleotide transhydrogenase; NZB: NZB/BINJ mouse strain; OXPHOS: oxidative phosphorylation; PINK1: PTEN induced putative kinase 1; Polg2: polymerase (DNA directed), gamma 2, accessory subunit; Ppara: peroxisome proliferator activated receptor alpha; Ppia: peptidylprolyl isomerase A; Prkn: parkin RBR E3 ubiquitin protein ligase; P10: post-natal day 10; P21: post-natal day 21; P100: post-natal day 100; qPCR: quantitative polymerase chain reaction; Rpl19: ribosomal protein L19; Rps18: ribosomal protein S18; SD: standard deviation; SEM: standard error of the mean; SDHB: succinate dehydrogenase complex, subunit B, iron sulfur (Ip); SQSTM1: sequestosome 1; Ssbp1: single-stranded DNA binding protein 1; TFAM: transcription factor A, mitochondrial; Tfb1m: transcription factor B1, mitochondrial; Tfb2m: transcription factor B2, mitochondrial; TOMM20: translocase of outer mitochondrial membrane 20; UQCRC2: ubiquinol cytochrome c reductase core protein 2; WT: wild-type.


Asunto(s)
Mitofagia , NADP Transhidrogenasas , Adenosina Trifosfato , Adulto , Animales , Apolipoproteínas/metabolismo , Apolipoproteínas B/metabolismo , Autofagia/genética , Dióxido de Carbono/metabolismo , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona , Citocromos b/metabolismo , ADN Mitocondrial/genética , Proteínas de Unión al ADN/metabolismo , Complejo III de Transporte de Electrones , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Hierro/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales , NAD/metabolismo , NADP Transhidrogenasas/metabolismo , PPAR alfa/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Ribosómicas/metabolismo , Proteína Sequestosoma-1/metabolismo , Succinato Deshidrogenasa/metabolismo , Azufre/metabolismo , Factores de Transcripción/metabolismo , Ubiquinona , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo
20.
Cells ; 11(3)2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35159195

RESUMEN

Intracellular peptides (InPeps) generated by proteasomes were previously suggested as putative natural regulators of protein-protein interactions (PPI). Here, the main aim was to investigate the intracellular effects of intracellular peptide VFDVELL (VFD7) and related peptides on PPI. The internalization of the peptides was achieved using a C-terminus covalently bound cell-penetrating peptide (cpp; YGRKKRRQRRR). The possible inhibition of PPI was investigated using a NanoBiT® luciferase structural complementation reporter system, with a pair of plasmids vectors each encoding, simultaneously, either FK506-binding protein (FKBP) or FKBP-binding domain (FRB) of mechanistic target of rapamycin complex 1 (mTORC1). The interaction of FKBP-FRB within cells occurs under rapamycin induction. Results shown that rapamycin-induced interaction between FKBP-FRB within human embryonic kidney 293 (HEK293) cells was inhibited by VFD7-cpp (10-500 nM) and FDVELLYGRKKRRQRRR (VFD6-cpp; 1-500 nM); additional VFD7-cpp derivatives were either less or not effective in inhibiting FKBP-FRB interaction induced by rapamycin. Molecular dynamics simulations suggested that selected peptides, such as VFD7-cpp, VFD6-cpp, VFAVELLYGRKKKRRQRRR (VFA7-cpp), and VFEVELLYGRKKKRRQRRR (VFA7-cpp), bind to FKBP and to FRB protein surfaces. However, only VFD7-cpp and VFD6-cpp induced changes on FKBP structure, which could help with understanding their mechanism of PPI inhibition. InPeps extracted from HEK293 cells were found mainly associated with macromolecular components (i.e., proteins and/or nucleic acids), contributing to understanding InPeps' intracellular proteolytic stability and mechanism of action-inhibiting PPI within cells. In a model of cell death induced by hypoxia-reoxygenation, VFD6-cpp (1 µM) increased the viability of mouse embryonic fibroblasts cells (MEF) expressing mTORC1-regulated autophagy-related gene 5 (Atg5), but not in autophagy-deficient MEF cells lacking the expression of Atg5. These data suggest that VFD6-cpp could have therapeutic applications reducing undesired side effects of rapamycin long-term treatments. In summary, the present report provides further evidence that InPeps have biological significance and could be valuable tools for the rational design of therapeutic molecules targeting intracellular PPI.


Asunto(s)
Sirolimus , Proteína 1A de Unión a Tacrolimus , Animales , Autofagia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Péptidos/farmacología , Sirolimus/farmacología , Tacrolimus , Proteína 1A de Unión a Tacrolimus/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA