Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Bioenerg Biomembr ; 48(3): 309-24, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26830892

RESUMEN

The ATP-gated P2X7R (P2X7R) is a channel, which is involved in events, such as inflammation, cell death, and pain. The most intriguing event concerning P2X7R functions is the phenomenon of pore dilation. Once P2X7R is activated, the permeability of the plasma membrane becomes higher, leading to the permeation of 1000 Da-weight solutes. The mechanisms involved in this process remain unclear. Nevertheless, this event is not exclusively through P2X7R, as other proteins may form large pores in the plasma membrane. Recent evidence concerning pore formation reveals putative P2X7R and other pores-associated protein complexes, revealing cross-interactive pharmacological and biophysical issues. In this work, we showed results that corroborated with cross-interactive aspects with P2X7R and pores in astrocytes. These cells expressed most of the pores, including P2X7R. We discovered that different pore types open with peculiar characteristics, as both anionic and cationic charged solutes permeate the plasma membrane, following P2X7R activation. Moreover, we showed that both synergic and additive relationships are found within P2X7, cationic, and anionic large pores. Therefore, our data suggest that other protein-related pores are assembled following the formation of P2X7R pore.


Asunto(s)
Astrocitos/citología , Permeabilidad de la Membrana Celular , Receptores Purinérgicos P2X7/metabolismo , Animales , Aniones/metabolismo , Cationes/metabolismo , Células Cultivadas , Canales Iónicos , Ratones , Porosidad , Antagonistas del Receptor Purinérgico P2X
2.
Endocrine ; 64(1): 169-175, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30729424

RESUMEN

INTRODUCTION: Glucocorticoid release by adrenals has been described as significant to survive sepsis. The activation of transient receptor potential vanilloid type 1 (TRPV1) inhibited ACTH-induced glucocorticoid release by adrenal glands in vitro. OBJECTIVE: The aim of this study was to investigate if capsaicin, an activator of TRPV1, would prevent LPS-induced glucocorticoid production by adrenals. METHODS: Male Swiss-Webster mice were treated with capsaicin intraperitoneally (0.2 or 2 mg/kg) 30 min before LPS injection. All analyses were performed 2 h after the LPS stimulation, including plasma corticosterone and peritoneal IL-1ß and TNF-α levels. Furthermore, murine adrenocortical Y1 cells were used to assess the effects of capsaicin on LPS-induced corticosterone production in vitro. RESULTS: Capsaicin (2 mg/kg, i.p.) significantly reduced plasma corticosterone levels and adrenal hypertrophy induced by LPS without alter the levels of pro-steroidogenic cytokines IL-1ß and TNF-α in peritoneal cavity of mice, while the dose of 0.2 mg/kg of capsaicin did not interfere with adrenal steroidogenesis, attested by RIA and ELISA, respectively. Y1 cells express TRPV1, measured by immunofluorescence and western blot, and capsaicin decreased LPS-induced corticosterone production by these cells in vitro. Capsaicin also induces calcium mobilization in Y1 cells in vitro. CONCLUSIONS: These findings suggest that capsaicin inhibits corticosterone production induced by LPS by acting directly on adrenal cells producing glucocorticoids, in a mechanism probably associated with induction of a cytoplasmic calcium increase in these cells.


Asunto(s)
Glándulas Suprarrenales/efectos de los fármacos , Calcio/metabolismo , Capsaicina/farmacología , Glucocorticoides/biosíntesis , Lipopolisacáridos/farmacología , Glándulas Suprarrenales/metabolismo , Animales , Líquido Ascítico/metabolismo , Línea Celular , Corticosterona/biosíntesis , Interleucina-1beta/metabolismo , Masculino , Ratones , Canales Catiónicos TRPV/agonistas , Factor de Necrosis Tumoral alfa/metabolismo
3.
PLoS One ; 11(4): e0153677, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27078878

RESUMEN

Neuroglia interactions are essential for the nervous system and in the retina Müller cells interact with most of the neurons in a symbiotic manner. Glutathione (GSH) is a low-molecular weight compound that undertakes major antioxidant roles in neurons and glia, however, whether this compound could act as a signaling molecule in neurons and/or glia is currently unknown. Here we used embryonic avian retina to obtain mixed retinal cells or purified Müller glia cells in culture to evaluate calcium shifts induced by GSH. A dose response curve (0.1-10 mM) showed that 5-10 mM GSH, induced calcium shifts exclusively in glial cells (later labeled and identified as 2M6 positive cells), while neurons responded to 50 mM KCl (labeled as ßIII tubulin positive cells). BBG 100 nM, a P2X7 blocker, inhibited the effects of GSH on Müller glia. However, addition of DNQX 70 µM and MK-801 20 µM, non-NMDA and NMDA blockers, had no effect on GSH calcium induced shift. Oxidized glutathione (GSSG) at 5 mM failed to induce calcium mobilization in glia cells, indicating that the antioxidant and/or structural features of GSH are essential to promote elevations in cytoplasmic calcium levels. Indeed, a short GSH pulse (60s) protects Müller glia from oxidative damage after 30 min of incubation with 0.1% H2O2. Finally, GSH induced GABA release from chick embryonic retina, mixed neuron-glia or from Müller cell cultures, which were inhibited by BBG or in the absence of sodium. GSH also induced propidium iodide uptake in Müller cells in culture in a P2X7 receptor dependent manner. Our data suggest that GSH, in addition to antioxidant effects, could act signaling calcium shifts at the millimolar range particularly in Müller glia, and could regulate the release of GABA, with additional protective effects on retinal neuron-glial circuit.


Asunto(s)
Calcio/metabolismo , Glutatión/farmacología , Neuroglía/efectos de los fármacos , Retina/citología , Animales , Apoptosis/efectos de los fármacos , Proteínas Aviares/metabolismo , Células Cultivadas , Embrión de Pollo , Pollos , Relación Dosis-Respuesta a Droga , Disulfuro de Glutatión/farmacología , Microscopía Fluorescente , Neuroglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Receptores Purinérgicos P2X7/metabolismo , Retina/embriología , Ácido gamma-Aminobutírico/metabolismo
4.
Biol Direct ; 9: 21, 2014 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-25351961

RESUMEN

UNLABELLED: Nucleotides and nucleosides act as potent extracellular messengers via the activation of the family of cell-surface receptors termed purinergic receptors. These receptors are categorized into P1 and P2 receptors (P2Rs). P2Rs are further classified into two distinct families, P2X receptors (P2XRs) and P2Y receptors (P2YRs). These receptors display broad tissue distribution throughout the body and are involved in several biological events. Immune cells express various P2Rs, and purinergic signaling mechanisms have been shown to play key roles in the regulation of many aspects of immune responses. Researchers have elucidated the involvement of these receptors in the host response to infections. The evidences indicate a dual function of these receptors, depending on the microorganism and the cellular model involved. Three recent reports have examined the relationship between the level of extracellular ATP, the mechanisms underlying purinergic receptors participating in the infection mechanism of HIV-1 in the cell. Although preliminary, these results indicate that purinergic receptors are putative pharmacological targets that should be further explored in future studies. REVIEWERS: This article was reviewed by Neil S. Greenspan and Rachel Gerstein.


Asunto(s)
Infecciones por VIH/metabolismo , VIH-1/fisiología , Receptores Purinérgicos/metabolismo , Transducción de Señal , Infecciones por VIH/inmunología , Humanos , Inmunidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA