Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem A ; 126(30): 4902-4914, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35861575

RESUMEN

We report on an original full ab initio quantum molecular approach designed to simulate Cu 2p X-ray photoelectron spectra. The description includes electronic relaxation/correlation and spin-orbit coupling effects and is implemented within nonorthogonal sets of molecular orbitals for the initial and final states. The underlying mechanism structuring the Cu 2p photoelectron spectra is clarified thanks to a correlation diagram applied to the CuO4C6H6 paradigm. This diagram illustrates how the energy drop of the Cu 3d levels following the creation of the Cu 2p core hole switches the nature of the highest singly occupied molecular orbital (H-SOMO) from dominant metal to dominant ligand character. It also reveals how the repositioning of the Cu 3d levels induces the formation of new bonding and antibonding orbitals from which shakeup mechanisms toward the relaxed H-SOMO operate. The specific nature, ligand → ligand and metal → ligand, of these excitations building the satellite lines is exposed. Our approach finally applied to the real Cu(acac)2 system clearly demonstrates how a definite interpretation of the XPS spectra can be obtained when a correct evaluation of binding energies, intensities, and relative widths of the spectral lines is achieved.

2.
J Chem Phys ; 151(21): 214303, 2019 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-31822078

RESUMEN

Single-site Double-Core Hole (ss-DCH or K-2) and two-site Double-Core Hole (ts-DCH or K-1K-1) photoelectron spectra including satellite lines were experimentally recorded for the aromatic C6H6 molecule using the synchrotron radiation and multielectron coincidence technique. Density functional theory and post-Hartree-Fock simulations providing binding energies and relative intensities allow us to clearly assign the main K-2 line and its satellites. K-1K-1 states' positions and assignments are further identified using a core-equivalent model. We predict that, contrary to what has been observed in the C2H2n series of molecules, the K-1K-1 energy-level ordering in C6H6 does not reflect the core-hole distances between the two holes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA