Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34850822

RESUMEN

Gene co-expression networks (GCNs) provide multiple benefits to molecular research including hypothesis generation and biomarker discovery. Transcriptome profiles serve as input for GCN construction and are derived from increasingly larger studies with samples across multiple experimental conditions, treatments, time points, genotypes, etc. Such experiments with larger numbers of variables confound discovery of true network edges, exclude edges and inhibit discovery of context (or condition) specific network edges. To demonstrate this problem, a 475-sample dataset is used to show that up to 97% of GCN edges can be misleading because correlations are false or incorrect. False and incorrect correlations can occur when tests are applied without ensuring assumptions are met, and pairwise gene expression may not meet test assumptions if the expression of at least one gene in the pairwise comparison is a function of multiple confounding variables. The 'one-size-fits-all' approach to GCN construction is therefore problematic for large, multivariable datasets. Recently, the Knowledge Independent Network Construction toolkit has been used in multiple studies to provide a dynamic approach to GCN construction that ensures statistical tests meet assumptions and confounding variables are addressed. Additionally, it can associate experimental context for each edge of the network resulting in context-specific GCNs (csGCNs). To help researchers recognize such challenges in GCN construction, and the creation of csGCNs, we provide a review of the workflow.


Asunto(s)
Redes Reguladoras de Genes , Transcriptoma
2.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34251419

RESUMEN

Online, open access databases for biological knowledge serve as central repositories for research communities to store, find and analyze integrated, multi-disciplinary datasets. With increasing volumes, complexity and the need to integrate genomic, transcriptomic, metabolomic, proteomic, phenomic and environmental data, community databases face tremendous challenges in ongoing maintenance, expansion and upgrades. A common infrastructure framework using community standards shared by many databases can reduce development burden, provide interoperability, ensure use of common standards and support long-term sustainability. Tripal is a mature, open source platform built to meet this need. With ongoing improvement since its first release in 2009, Tripal provides full functionality for searching, browsing, loading and curating numerous types of data and is a primary technology powering at least 31 publicly available databases spanning plants, animals and human data, primarily storing genomics, genetics and breeding data. Tripal software development is managed by a shared, inclusive governance structure including both project management and advisory teams. Here, we report on the most important and innovative aspects of Tripal after 11 years development, including integration of diverse types of biological data, successful collaborative projects across member databases, and support for implementing FAIR principles.


Asunto(s)
Cruzamiento , Biología Computacional/métodos , Bases de Datos Genéticas , Genómica/métodos , Plantas/genética , Programas Informáticos , Productos Agrícolas/genética , Variación Genética , Filogenia , Plantas/metabolismo , Proteómica , Navegador Web
3.
BMC Bioinformatics ; 23(1): 156, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35501696

RESUMEN

BACKGROUND: Quantification of gene expression from RNA-seq data is a prerequisite for transcriptome analysis such as differential gene expression analysis and gene co-expression network construction. Individual RNA-seq experiments are larger and combining multiple experiments from sequence repositories can result in datasets with thousands of samples. Processing hundreds to thousands of RNA-seq data can result in challenges related to data management, access to sufficient computational resources, navigation of high-performance computing (HPC) systems, installation of required software dependencies, and reproducibility. Processing of larger and deeper RNA-seq experiments will become more common as sequencing technology matures. RESULTS: GEMmaker, is a nf-core compliant, Nextflow workflow, that quantifies gene expression from small to massive RNA-seq datasets. GEMmaker ensures results are highly reproducible through the use of versioned containerized software that can be executed on a single workstation, institutional compute cluster, Kubernetes platform or the cloud. GEMmaker supports popular alignment and quantification tools providing results in raw and normalized formats. GEMmaker is unique in that it can scale to process thousands of local or remote stored samples without exceeding available data storage. CONCLUSIONS: Workflows that quantify gene expression are not new, and many already address issues of portability, reusability, and scale in terms of access to CPUs. GEMmaker provides these benefits and adds the ability to scale despite low data storage infrastructure. This allows users to process hundreds to thousands of RNA-seq samples even when data storage resources are limited. GEMmaker is freely available and fully documented with step-by-step setup and execution instructions.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , RNA-Seq , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN/métodos
4.
BMC Genomics ; 23(1): 350, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35524179

RESUMEN

BACKGROUND: Lung cancer is the leading cause of cancer death in both men and women. The most common lung cancer subtype is non-small cell lung carcinoma (NSCLC) comprising about 85% of all cases. NSCLC can be further divided into three subtypes: adenocarcinoma (LUAD), squamous cell carcinoma (LUSC), and large cell lung carcinoma. Specific genetic mutations and epigenetic aberrations play an important role in the developmental transition to a specific tumor subtype. The elucidation of normal lung versus lung tumor gene expression patterns and regulatory targets yields biomarker systems that discriminate lung phenotypes (i.e., biomarkers) and provide a foundation for the discovery of normal and aberrant gene regulatory mechanisms. RESULTS: We built condition-specific gene co-expression networks (csGCNs) for normal lung, LUAD, and LUSC conditions. Then, we integrated normal lung tissue-specific gene regulatory networks (tsGRNs) to elucidate control-target biomarker systems for normal and cancerous lung tissue. We characterized co-expressed gene edges, possibly under common regulatory control, for relevance in lung cancer. CONCLUSIONS: Our approach demonstrates the ability to elucidate csGCN:tsGRN merged biomarker systems based on gene expression correlation and regulation. The biomarker systems we describe can be used to classify and further describe lung specimens. Our approach is generalizable and can be used to discover and interpret complex gene expression patterns for any condition or species.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Biomarcadores , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Pronóstico
5.
Nucleic Acids Res ; 47(D1): D1137-D1145, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30357347

RESUMEN

The Genome Database for Rosaceae (GDR, https://www.rosaceae.org) is an integrated web-based community database resource providing access to publicly available genomics, genetics and breeding data and data-mining tools to facilitate basic, translational and applied research in Rosaceae. The volume of data in GDR has increased greatly over the last 5 years. The GDR now houses multiple versions of whole genome assembly and annotation data from 14 species, made available by recent advances in sequencing technology. Annotated and searchable reference transcriptomes, RefTrans, combining peer-reviewed published RNA-Seq as well as EST datasets, are newly available for major crop species. Significantly more quantitative trait loci, genetic maps and markers are available in MapViewer, a new visualization tool that better integrates with other pages in GDR. Pathways can be accessed through the new GDR Cyc Pathways databases, and synteny among the newest genome assemblies from eight species can be viewed through the new synteny browser, SynView. Collated single-nucleotide polymorphism diversity data and phenotypic data from publicly available breeding datasets are integrated with other relevant data. Also, the new Breeding Information Management System allows breeders to upload, manage and analyze their private breeding data within the secure GDR server with an option to release data publicly.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Genoma de Planta/genética , Genómica/métodos , Rosaceae/genética , Biología Computacional/estadística & datos numéricos , Perfilación de la Expresión Génica/métodos , Genes de Plantas/genética , Almacenamiento y Recuperación de la Información/métodos , Internet , Fitomejoramiento/métodos , Sitios de Carácter Cuantitativo/genética , Rosaceae/clasificación , Especificidad de la Especie , Sintenía , Factores de Tiempo , Interfaz Usuario-Computador
6.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32244875

RESUMEN

Lentil (Lens culinaris Medikus) is an important source of protein for people in developing countries. Aphanomyces root rot (ARR) has emerged as one of the most devastating diseases affecting lentil production. In this study, we applied two complementary quantitative trait loci (QTL) analysis approaches to unravel the genetic architecture underlying this complex trait. A recombinant inbred line (RIL) population and an association mapping population were genotyped using genotyping by sequencing (GBS) to discover novel single nucleotide polymorphisms (SNPs). QTL mapping identified 19 QTL associated with ARR resistance, while association mapping detected 38 QTL and highlighted accumulation of favorable haplotypes in most of the resistant accessions. Seven QTL clusters were discovered on six chromosomes, and 15 putative genes were identified within the QTL clusters. To validate QTL mapping and genome-wide association study (GWAS) results, expression analysis of five selected genes was conducted on partially resistant and susceptible accessions. Three of the genes were differentially expressed at early stages of infection, two of which may be associated with ARR resistance. Our findings provide valuable insight into the genetic control of ARR, and genetic and genomic resources developed here can be used to accelerate development of lentil cultivars with high levels of partial resistance to ARR.


Asunto(s)
Aphanomyces/fisiología , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Lens (Planta)/genética , Lens (Planta)/microbiología , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo/genética , Análisis de Datos , Regulación de la Expresión Génica de las Plantas , Genética de Población , Haplotipos/genética , Desequilibrio de Ligamiento/genética , Fenotipo , Enfermedades de las Plantas/microbiología
7.
Nucleic Acids Res ; 42(Database issue): D1229-36, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24203703

RESUMEN

CottonGen (http://www.cottongen.org) is a curated and integrated web-based relational database providing access to publicly available genomic, genetic and breeding data for cotton. CottonGen supercedes CottonDB and the Cotton Marker Database, with enhanced tools for easier data sharing, mining, visualization and data retrieval of cotton research data. CottonGen contains annotated whole genome sequences, unigenes from expressed sequence tags (ESTs), markers, trait loci, genetic maps, genes, taxonomy, germplasm, publications and communication resources for the cotton community. Annotated whole genome sequences of Gossypium raimondii are available with aligned genetic markers and transcripts. These whole genome data can be accessed through genome pages, search tools and GBrowse, a popular genome browser. Most of the published cotton genetic maps can be viewed and compared using CMap, a comparative map viewer, and are searchable via map search tools. Search tools also exist for markers, quantitative trait loci (QTLs), germplasm, publications and trait evaluation data. CottonGen also provides online analysis tools such as NCBI BLAST and Batch BLAST.


Asunto(s)
Bases de Datos Genéticas , Genoma de Planta , Gossypium/genética , Cruzamiento , Etiquetas de Secuencia Expresada , Genes de Plantas , Marcadores Genéticos , Genómica , Internet , Sitios de Carácter Cuantitativo
8.
Nucleic Acids Res ; 42(Database issue): D1237-44, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24225320

RESUMEN

The Genome Database for Rosaceae (GDR, http:/www.rosaceae.org), the long-standing central repository and data mining resource for Rosaceae research, has been enhanced with new genomic, genetic and breeding data, and improved functionality. Whole genome sequences of apple, peach and strawberry are available to browse or download with a range of annotations, including gene model predictions, aligned transcripts, repetitive elements, polymorphisms, mapped genetic markers, mapped NCBI Rosaceae genes, gene homologs and association of InterPro protein domains, GO terms and Kyoto Encyclopedia of Genes and Genomes pathway terms. Annotated sequences can be queried using search interfaces and visualized using GBrowse. New expressed sequence tag unigene sets are available for major genera, and Pathway data are available through FragariaCyc, AppleCyc and PeachCyc databases. Synteny among the three sequenced genomes can be viewed using GBrowse_Syn. New markers, genetic maps and extensively curated qualitative/Mendelian and quantitative trait loci are available. Phenotype and genotype data from breeding projects and genetic diversity projects are also included. Improved search pages are available for marker, trait locus, genetic diversity and publication data. New search tools for breeders enable selection comparison and assistance with breeding decision making.


Asunto(s)
Bases de Datos Genéticas , Genoma de Planta , Rosaceae/genética , Cruzamiento , Genes de Plantas , Marcadores Genéticos , Variación Genética , Genómica , Internet , Sitios de Carácter Cuantitativo
9.
BMC Genomics ; 16: 155, 2015 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-25886969

RESUMEN

BACKGROUND: A high-throughput genotyping platform is needed to enable marker-assisted breeding in the allo-octoploid cultivated strawberry Fragaria × ananassa. Short-read sequences from one diploid and 19 octoploid accessions were aligned to the diploid Fragaria vesca 'Hawaii 4' reference genome to identify single nucleotide polymorphisms (SNPs) and indels for incorporation into a 90 K Affymetrix® Axiom® array. We report the development and preliminary evaluation of this array. RESULTS: About 36 million sequence variants were identified in a 19 member, octoploid germplasm panel. Strategies and filtering pipelines were developed to identify and incorporate markers of several types: di-allelic SNPs (66.6%), multi-allelic SNPs (1.8%), indels (10.1%), and ploidy-reducing "haploSNPs" (11.7%). The remaining SNPs included those discovered in the diploid progenitor F. iinumae (3.9%), and speculative "codon-based" SNPs (5.9%). In genotyping 306 octoploid accessions, SNPs were assigned to six classes with Affymetrix's "SNPolisher" R package. The highest quality classes, PolyHigh Resolution (PHR), No Minor Homozygote (NMH), and Off-Target Variant (OTV) comprised 25%, 38%, and 1% of array markers, respectively. These markers were suitable for genetic studies as demonstrated in the full-sib family 'Holiday' × 'Korona' with the generation of a genetic linkage map consisting of 6,594 PHR SNPs evenly distributed across 28 chromosomes with an average density of approximately one marker per 0.5 cM, thus exceeding our goal of one marker per cM. CONCLUSIONS: The Affymetrix IStraw90 Axiom array is the first high-throughput genotyping platform for cultivated strawberry and is commercially available to the worldwide scientific community. The array's high success rate is likely driven by the presence of naturally occurring variation in ploidy level within the nominally octoploid genome, and by effectiveness of the employed array design and ploidy-reducing strategies. This array enables genetic analyses including generation of high-density linkage maps, identification of quantitative trait loci for economically important traits, and genome-wide association studies, thus providing a basis for marker-assisted breeding in this high value crop.


Asunto(s)
Fragaria/genética , Técnicas de Genotipaje/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Polimorfismo de Nucleótido Simple , Poliploidía , Mapeo Cromosómico , Hibridación Genética , Mutación INDEL , Análisis de Secuencia de ADN
10.
PLoS One ; 19(3): e0297015, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38446822

RESUMEN

Gene expression is highly impacted by the environment and can be reflective of past events that affected developmental processes. It is therefore expected that gene expression can serve as a signal of a current or future phenotypic traits. In this paper we identify sets of genes, which we call Prognostic Transcriptomic Biomarkers (PTBs), that can predict firmness in Malus domestica (apple) fruits. In apples, all individuals of a cultivar are clones, and differences in fruit quality are due to the environment. The apples transcriptome responds to these differences in environment, which makes PTBs an attractive predictor of future fruit quality. PTBs have the potential to enhance supply chain efficiency, reduce crop loss, and provide higher and more consistent quality for consumers. However, several questions must be addressed. In this paper we answer the question of which of two common modeling approaches, Random Forest or ElasticNet, outperforms the other. We answer if PTBs with few genes are efficient at predicting traits. This is important because we need few genes to perform qPCR, and we answer the question if qPCR is a cost-effective assay as input for PTBs modeled using high-throughput RNA-seq. To do this, we conducted a pilot study using fruit texture in the 'Gala' variety of apples across several postharvest storage regiments. Fruit texture in 'Gala' apples is highly controllable by post-harvest treatments and is therefore a good candidate to explore the use of PTBs. We find that the RandomForest model is more consistent than an ElasticNet model and is predictive of firmness (r2 = 0.78) with as few as 15 genes. We also show that qPCR is reasonably consistent with RNA-seq in a follow up experiment. Results are promising for PTBs, yet more work is needed to ensure that PTBs are robust across various environmental conditions and storage treatments.


Asunto(s)
Malus , Humanos , Malus/genética , Frutas/genética , Transcriptoma , Proyectos Piloto , Perfilación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA