Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 9(9): e107570, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25259609

RESUMEN

Protein-energy malnutrition (PEM) is a common post-stroke problem. PEM can independently induce a systemic acute-phase response, and pre-existing malnutrition can exacerbate neuroinflammation induced by brain ischemia. In contrast, the effects of PEM developing in the post-ischemic period have not been studied. Since excessive inflammation can impede brain remodeling, we investigated the effects of post-ischemic malnutrition on neuroinflammation, the acute-phase reaction, and neuroplasticity-related proteins. Male, Sprague-Dawley rats were exposed to global forebrain ischemia using the 2-vessel occlusion model or sham surgery. The sham rats were assigned to control diet (18% protein) on day 3 after surgery, whereas the rats exposed to global ischemia were assigned to either control diet or a low protein (PEM, 2% protein) diet. Post-ischemic PEM decreased growth associated protein-43, synaptophysin and synaptosomal-associated protein-25 immunofluorescence within the hippocampal CA3 mossy fiber terminals on day 21, whereas the glial response in the hippocampal CA1 and CA3 subregions was unaltered by PEM. No systemic acute-phase reaction attributable to global ischemia was detected in control diet-fed rats, as reflected by serum concentrations of alpha-2-macroglobulin, alpha-1-acid glycoprotein, haptoglobin, and albumin. Acute exposure to the PEM regimen after global brain ischemia caused an atypical acute-phase response. PEM decreased the serum concentrations of albumin and haptoglobin on day 5, with the decreases sustained to day 21. Serum alpha-2-macroglobulin concentrations were significantly higher in malnourished rats on day 21. This provides the first direct evidence that PEM developing after brain ischemia exerts wide-ranging effects on mechanisms important to stroke recovery.


Asunto(s)
Reacción de Fase Aguda/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Proteína GAP-43/genética , Expresión Génica , Desnutrición Proteico-Calórica/etiología , Animales , Biomarcadores/metabolismo , Peso Corporal , Isquemia Encefálica/complicaciones , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/patología , Región CA3 Hipocampal/metabolismo , Región CA3 Hipocampal/patología , Muerte Celular , Modelos Animales de Enfermedad , Masculino , Neuroglía/patología , Terminales Presinápticos/metabolismo , Células Piramidales/metabolismo , Células Piramidales/patología , Ratas
2.
J Neurotrauma ; 31(6): 541-52, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24237182

RESUMEN

Significant vascular changes occur subsequent to spinal cord injury (SCI), which contribute to progressive pathophysiology. In the present study, we used female Wistar rats (300-350 g) and a 35-g clip-compression injury at T6 to T7 to characterize the spatial and temporal vascular changes that ensue post-SCI. Before sacrifice, animals were injected with vascular tracing dyes (2% Evans Blue (EB) or fluorescein isothiocyanate/Lycopersicon esculentum agglutinin [FITC-LEA]) to assess blood-spinal cord barrier (BSCB) integrity or vascular architecture, respectively. Spectrophotometry of EB tissue showed maximal BSCB disruption at 24 h postinjury, with significant disruption observed until 5 days postinjury (p<0.01). FITC-LEA-identified functional vasculature was dramatically reduced by 24 h. Similarly, RECA-1 immunohistochemistry showed a significant decrease in the number of vessels at 24 h postinjury, compared to uninjured animals (p<0.01), with slight increases in endogenous revascularization by 10 days postinjury. White versus gray matter (GM) quantification showed that GM vessels are more susceptible to SCI. Finally, we observed an endogenous angiogenic response between 3 and 7 days postinjury: maximal endothelial cell proliferation was observed at day 5. These data indicate that BSCB disruption and endogenous revascularization occur at specific time points after injury, which may be important for developing effective therapeutic interventions for SCI.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Neovascularización Patológica/metabolismo , Neovascularización Patológica/fisiopatología , Permeabilidad , Ratas , Ratas Wistar , Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Factores de Tiempo
3.
PLoS One ; 9(5): e96137, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24846143

RESUMEN

Following spinal cord injury (SCI) there are drastic changes that occur in the spinal microvasculature, including ischemia, hemorrhage, endothelial cell death and blood-spinal cord barrier disruption. Vascular endothelial growth factor-A (VEGF-A) is a pleiotropic factor recognized for its pro-angiogenic properties; however, VEGF has recently been shown to provide neuroprotection. We hypothesized that delivery of AdV-ZFP-VEGF--an adenovirally delivered bio-engineered zinc-finger transcription factor that promotes endogenous VEGF-A expression--would result in angiogenesis, neuroprotection and functional recovery following SCI. This novel VEGF gene therapy induces the endogenous production of multiple VEGF-A isoforms; a critical factor for proper vascular development and repair. Briefly, female Wistar rats--under cyclosporin immunosuppression--received a 35 g clip-compression injury and were administered AdV-ZFP-VEGF or AdV-eGFP at 24 hours post-SCI. qRT-PCR and Western Blot analysis of VEGF-A mRNA and protein, showed significant increases in VEGF-A expression in AdV-ZFP-VEGF treated animals (p<0.001 and p<0.05, respectively). Analysis of NF200, TUNEL, and RECA-1 indicated that AdV-ZFP-VEGF increased axonal preservation (p<0.05), reduced cell death (p<0.01), and increased blood vessels (p<0.01), respectively. Moreover, AdV-ZFP-VEGF resulted in a 10% increase in blood vessel proliferation (p<0.001). Catwalk™ analysis showed AdV-ZFP-VEGF treatment dramatically improves hindlimb weight support (p<0.05) and increases hindlimb swing speed (p<0.02) when compared to control animals. Finally, AdV-ZFP-VEGF administration provided a significant reduction in allodynia (p<0.01). Overall, the results of this study indicate that AdV-ZFP-VEGF administration can be delivered in a clinically relevant time-window following SCI (24 hours) and provide significant molecular and functional benefits.


Asunto(s)
Adenoviridae , Terapia Genética/métodos , Hiperalgesia/terapia , Traumatismos de la Médula Espinal/terapia , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Dedos de Zinc , Animales , Femenino , Células HEK293 , Humanos , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Hiperalgesia/patología , Neovascularización Fisiológica/genética , Ratas , Ratas Wistar , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Factor A de Crecimiento Endotelial Vascular/genética
4.
PLoS One ; 8(3): e58081, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23516432

RESUMEN

In vivo and direct imaging of the murine spinal cord and its vasculature using multimodal (optical and acoustic) imaging techniques could significantly advance preclinical studies of the spinal cord. Such intrinsically high resolution and complementary imaging technologies could provide a powerful means of quantitatively monitoring changes in anatomy, structure, physiology and function of the living cord over time after traumatic injury, onset of disease, or therapeutic intervention. However, longitudinal in vivo imaging of the intact spinal cord in rodent models has been challenging, requiring repeated surgeries to expose the cord for imaging or sacrifice of animals at various time points for ex vivo tissue analysis. To address these limitations, we have developed an implantable spinal cord window chamber (SCWC) device and procedures in mice for repeated multimodal intravital microscopic imaging of the cord and its vasculature in situ. We present methodology for using our SCWC to achieve spatially co-registered optical-acoustic imaging performed serially for up to four weeks, without damaging the cord or induction of locomotor deficits in implanted animals. To demonstrate the feasibility, we used the SCWC model to study the response of the normal spinal cord vasculature to ionizing radiation over time using white light and fluorescence microscopy combined with optical coherence tomography (OCT) in vivo. In vivo power Doppler ultrasound and photoacoustics were used to directly visualize the cord and vascular structures and to measure hemoglobin oxygen saturation through the complete spinal cord, respectively. The model was also used for intravital imaging of spinal micrometastases resulting from primary brain tumor using fluorescence and bioluminescence imaging. Our SCWC model overcomes previous in vivo imaging challenges, and our data provide evidence of the broader utility of hybridized optical-acoustic imaging methods for obtaining multiparametric and rich imaging data sets, including over extended periods, for preclinical in vivo spinal cord research.


Asunto(s)
Médula Espinal/cirugía , Tomografía de Coherencia Óptica/métodos , Ultrasonografía/métodos , Animales , Modelos Animales de Enfermedad , Femenino , Hemoglobinas/metabolismo , Ratones , Consumo de Oxígeno , Médula Espinal/irrigación sanguínea , Médula Espinal/diagnóstico por imagen , Traumatismos de la Médula Espinal/diagnóstico , Traumatismos de la Médula Espinal/cirugía , Neoplasias de la Médula Espinal/diagnóstico , Neoplasias de la Médula Espinal/secundario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA