Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 41(9): e110466, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35307861

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) tumor cells are deprived of oxygen and nutrients and therefore must adapt their metabolism to ensure proliferation. In some physiological states, cells rely on ketone bodies to satisfy their metabolic needs, especially during nutrient stress. Here, we show that PDA cells can activate ketone body metabolism and that ß-hydroxybutyrate (ßOHB) is an alternative cell-intrinsic or systemic fuel that can promote PDA growth and progression. PDA cells activate enzymes required for ketogenesis, utilizing various nutrients as carbon sources for ketone body formation. By assessing metabolic gene expression from spontaneously arising PDA tumors in mice, we find HMG-CoA lyase (HMGCL), involved in ketogenesis, to be among the most deregulated metabolic enzymes in PDA compared to normal pancreas. In vitro depletion of HMGCL impedes migration, tumor cell invasiveness, and anchorage-independent tumor sphere compaction. Moreover, disrupting HMGCL drastically decreases PDA tumor growth in vivo, while ßOHB stimulates metastatic dissemination to the liver. These findings suggest that ßOHB increases PDA aggressiveness and identify HMGCL and ketogenesis as metabolic targets for limiting PDA progression.


Asunto(s)
Cuerpos Cetónicos , Neoplasias Pancreáticas , Ácido 3-Hidroxibutírico/metabolismo , Animales , Cuerpos Cetónicos/metabolismo , Ratones , Oxo-Ácido-Liasas , Páncreas/metabolismo
2.
Genes Dev ; 31(6): 553-566, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28404630

RESUMEN

The female mammary gland is a very dynamic organ that undergoes continuous tissue remodeling during adulthood. Although it is well established that the number of menstrual cycles and pregnancy (in this case transiently) increase the risk of breast cancer, the reasons are unclear. Growing clinical and experimental evidence indicates that improper involution plays a role in the development of this malignancy. Recently, we described the miR-424(322)/503 cluster as an important regulator of mammary epithelial involution after pregnancy. Here, through the analysis of ∼3000 primary tumors, we show that miR-424(322)/503 is commonly lost in a subset of aggressive breast cancers and describe the genetic aberrations that inactivate its expression. Furthermore, through the use of a knockout mouse model, we demonstrate for the first time that loss of miR-424(322)/503 promotes breast tumorigenesis in vivo. Remarkably, we found that loss of miR-424(322)/503 promotes chemoresistance due to the up-regulation of two of its targets: BCL-2 and insulin-like growth factor-1 receptor (IGF1R). Importantly, targeted therapies blocking the aberrant activity of these targets restore sensitivity to chemotherapy. Overall, our studies reveal miR-424(322)/503 as a tumor suppressor in breast cancer and provide a link between mammary epithelial involution, tumorigenesis, and the phenomenon of chemoresistance.


Asunto(s)
Neoplasias de la Mama/genética , MicroARNs/genética , Animales , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Resistencia a Antineoplásicos , Femenino , Eliminación de Gen , Genes Supresores de Tumor , Humanos , Neoplasias Mamarias Experimentales/genética , Ratones , Embarazo , Complicaciones Neoplásicas del Embarazo/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Receptor IGF Tipo 1 , Receptores de Somatomedina/genética , Fosfatasas cdc25/genética
3.
J Cell Sci ; 135(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35971817

RESUMEN

Upregulation of the developmental Wnt planar cell polarity (Wnt/PCP) pathway is observed in many cancers and is associated with cancer development. We have recently shown that PRICKLE1, a core Wnt/PCP pathway component, is a marker of poor prognosis in triple-negative breast cancer (TNBC). PRICKLE1 is phosphorylated by the serine/threonine kinase MINK1 and contributes to TNBC cell motility and invasiveness. However, the identity of the substrates of MINK1 and the role of MINK1 enzymatic activity in this process remain to be addressed. We used a phosphoproteomic strategy to identify MINK1 substrates, including LL5ß (also known as PHLDB2). LL5ß anchors microtubules at the cell cortex through its association with CLASP proteins to trigger focal adhesion disassembly. LL5ß is phosphorylated by MINK1, promoting its interaction with CLASP proteins. Using a kinase inhibitor, we demonstrate that the enzymatic activity of MINK1 is involved in PRICKLE1-LL5ß complex assembly and localization, as well as in cell migration. Analysis of gene expression data reveals that the concomitant upregulation of levels of mRNA encoding PRICKLE1 and LL5ß, which are MINK1 substrates, is associated with poor metastasis-free survival in TNBC patients. Taken together, our results suggest that MINK1 may represent a potential target for treatment of TNBC.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Neoplasias de la Mama Triple Negativas , Línea Celular Tumoral , Movimiento Celular , Humanos , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Serina/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo
4.
J Transl Med ; 22(1): 374, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637846

RESUMEN

BACKGROUND: Inflammatory breast cancer (IBC) is the most pro-metastatic form of BC. Better understanding of its enigmatic pathophysiology is crucial. We report here the largest whole-exome sequencing (WES) study of clinical IBC samples. METHODS: We retrospectively applied WES to 54 untreated IBC primary tumor samples and matched normal DNA. The comparator samples were 102 stage-matched non-IBC samples from TCGA. We compared the somatic mutational profiles, spectra and signatures, copy number alterations (CNAs), HRD and heterogeneity scores, and frequencies of actionable genomic alterations (AGAs) between IBCs and non-IBCs. The comparisons were adjusted for the molecular subtypes. RESULTS: The number of somatic mutations, TMB, and mutational spectra were not different between IBCs and non-IBCs, and no gene was differentially mutated or showed differential frequency of CNAs. Among the COSMIC signatures, only the age-related signature was more frequent in non-IBCs than in IBCs. We also identified in IBCs two new mutational signatures not associated with any environmental exposure, one of them having been previously related to HIF pathway activation. Overall, the HRD score was not different between both groups, but was higher in TN IBCs than TN non-IBCs. IBCs were less frequently classified as heterogeneous according to heterogeneity H-index than non-IBCs (21% vs 33%), and clonal mutations were more frequent and subclonal mutations less frequent in IBCs. More than 50% of patients with IBC harbored at least one high-level of evidence (LOE) AGA (OncoKB LOE 1-2, ESCAT LOE I-II), similarly to patients with non-IBC. CONCLUSIONS: We provide the largest mutational landscape of IBC. Only a few subtle differences were identified with non-IBCs. The most clinically relevant one was the higher HRD score in TN IBCs than in TN non-IBCs, whereas the most intriguing one was the smaller intratumor heterogeneity of IBCs.


Asunto(s)
Neoplasias de la Mama , Neoplasias Inflamatorias de la Mama , Humanos , Femenino , Neoplasias Inflamatorias de la Mama/genética , Neoplasias Inflamatorias de la Mama/patología , Neoplasias de la Mama/genética , Estudios Retrospectivos , Mutación/genética , Genómica
5.
J Transl Med ; 22(1): 969, 2024 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-39465437

RESUMEN

BACKGROUND: Neoadjuvant chemotherapy (NACT) became a standard treatment strategy for patients with inflammatory breast cancer (IBC) because of high disease aggressiveness. However, given the heterogeneity of IBC, no molecular feature reliably predicts the response to chemotherapy. Whole-exome sequencing (WES) of clinical tumor samples provides an opportunity to identify genomic alterations associated with chemosensitivity. METHODS: We retrospectively applied WES to 44 untreated IBC primary tumor samples and matched normal DNA. The pathological response to NACT, assessed on operative specimen, distinguished the patients with versus without pathological complete response (pCR versus no-pCR respectively). We compared the mutational profiles, spectra and signatures, pathway mutations, copy number alterations (CNAs), HRD, and heterogeneity scores between pCR versus no-pCR patients. RESULTS: The TMB, HRD, and mutational spectra were not different between the complete (N = 13) versus non-complete (N = 31) responders. The two most frequently mutated genes were TP53 and PIK3CA. They were more frequently mutated in the complete responders, but the difference was not significant. Only two genes, NLRP3 and SLC9B1, were significantly more frequently mutated in the complete responders (23% vs. 0%). By contrast, several biological pathways involved in protein translation, PI3K pathway, and signal transduction showed significantly higher mutation frequency in the patients with pCR. We observed a higher abundance of COSMIC signature 7 (due to ultraviolet light exposure) in tumors from complete responders. The comparison of CNAs of the 3808 genes included in the GISTIC regions between both patients' groups identified 234 genes as differentially altered. The CIN signatures were not differentially represented between the complete versus non-complete responders. Based on the H-index, the patients with heterogeneous tumors displayed a lower pCR rate (11%) than those with less heterogeneous tumors (35%). CONCLUSIONS: This is the first study aiming at identifying correlations between the WES data of IBC samples and the achievement of pCR to NACT. Our results, obtained in this 44-sample series, suggest a few subtle genomic alterations associated with pathological response. Additional investigations are required in larger series.


Asunto(s)
Secuenciación del Exoma , Neoplasias Inflamatorias de la Mama , Mutación , Terapia Neoadyuvante , Humanos , Femenino , Neoplasias Inflamatorias de la Mama/genética , Neoplasias Inflamatorias de la Mama/patología , Neoplasias Inflamatorias de la Mama/tratamiento farmacológico , Persona de Mediana Edad , Mutación/genética , Exoma/genética , Adulto , Resultado del Tratamiento , Variaciones en el Número de Copia de ADN/genética , Anciano
6.
Cell Commun Signal ; 22(1): 1, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167013

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) remains a clinically challenging cancer, mainly due to limited therapeutic options and the presence of a highly prominent tumor microenvironment (TME), facilitating tumor progression. The TME is predominated by heterogeneous populations of cancer-associated fibroblasts (CAFs) and tumor associated macrophages (TAMs), in constant communication with each other and with tumor cells, influencing many tumoral abilities such as therapeutic resistance. However how the crosstalk between CAFs and macrophages evolves following chemotherapeutic treatment remains poorly understood, limiting our capacity to halt therapeutic resistance. METHODS: We combined biological characterization of macrophages indirectly cocultured with human PDAC CAFs, under FOLFIRINOX treatment, with mRNAseq analyses of such macrophages and evaluated the relevance of the specific gene expression signature in a large series of primary PDAC patients to search for correlation with overall survival (OS) after FOLFIRINOX chemotherapy. RESULTS: Firstly, we demonstrated that CAFs polarize naïve and M1 macrophages towards an M2-like phenotype with a specific increase of CD200R and CD209 M2 markers. Then, we demonstrated that CAFs counteract the pro-inflammatory phenotype induced by the FOLFIRINOX on Macrophages. Indeed, we highlighted that, under FOLFIRINOX, CAFs limit the FOLFIRINOX-induced cell death of macrophages and further reinforce their M2 phenotype as well as their immunosuppressive impact through specific chemokines production. Finally, we revealed that under FOLFIRINOX CAFs drive a specific macrophage gene expression signature involving SELENOP and GOS2 that correlates with shortened OS in FOLFIRINOX-treated PDAC patients. CONCLUSION: Our study provides insight into the complex interactions between TME cells under FOLFIRINOX treatment. It suggests potential novel candidates that could be used as therapeutic targets in combination with FOLFIRINOX to prevent and alleviate TME influx on therapeutic resistance as well as biomarkers to predict FOLFIRINOX response in PDAC patients. Video Abstract.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Fibroblastos Asociados al Cáncer/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Macrófagos/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Microambiente Tumoral
7.
Mol Ther ; 31(2): 471-486, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35965411

RESUMEN

The heat shock protein 27 (Hsp27) has emerged as a principal factor of the castration-resistant prostate cancer (CRPC) progression. Also, an antisense oligonucleotide (ASO) against Hsp27 (OGX-427 or apatorsen) has been assessed in different clinical trials. Here, we illustrate that Hsp27 highly regulates the expression of the human DEAD-box protein 5 (DDX5), and we define DDX5 as a novel therapeutic target for CRPC treatment. DDX5 overexpression is strongly correlated with aggressive tumor features, notably with CRPC. DDX5 downregulation using a specific ASO-based inhibitor that acts on DDX5 mRNAs inhibits cell proliferation in preclinical models, and it particularly restores the treatment sensitivity of CRPC. Interestingly, through the identification and analysis of DDX5 protein interaction networks, we have identified some specific functions of DDX5 in CRPC that could contribute actively to tumor progression and therapeutic resistance. We first present the interactions of DDX5 and the Ku70/80 heterodimer and the transcription factor IIH, thereby uncovering DDX5 roles in different DNA repair pathways. Collectively, our study highlights critical functions of DDX5 contributing to CRPC progression and provides preclinical proof of concept that a combination of ASO-directed DDX5 inhibition with a DNA damage-inducing therapy can serve as a highly potential novel strategy to treat CRPC.


Asunto(s)
Oligonucleótidos Antisentido , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico , Oligonucleótidos Antisentido/farmacología , Neoplasias de la Próstata Resistentes a la Castración/terapia , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , ARN Mensajero/uso terapéutico , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP27/uso terapéutico , Línea Celular Tumoral , ARN Helicasas DEAD-box/genética
8.
Gut ; 72(4): 722-735, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36882214

RESUMEN

OBJECTIVE: Intercellular communication within pancreatic ductal adenocarcinoma (PDAC) dramatically contributes to metastatic processes. The underlying mechanisms are poorly understood, resulting in a lack of targeted therapy to counteract stromal-induced cancer cell aggressiveness. Here, we investigated whether ion channels, which remain understudied in cancer biology, contribute to intercellular communication in PDAC. DESIGN: We evaluated the effects of conditioned media from patient-derived cancer-associated fibroblasts (CAFs) on electrical features of pancreatic cancer cells (PCC). The molecular mechanisms were deciphered using a combination of electrophysiology, bioinformatics, molecular and biochemistry techniques in cell lines and human samples. An orthotropic mouse model where CAF and PCC were co-injected was used to evaluate tumour growth and metastasis dissemination. Pharmacological studies were carried out in the Pdx1-Cre, Ink4afl/fl LSL-KrasG12D (KICpdx1) mouse model. RESULTS: We report that the K+ channel SK2 expressed in PCC is stimulated by CAF-secreted cues (8.84 vs 2.49 pA/pF) promoting the phosphorylation of the channel through an integrin-epidermal growth factor receptor (EGFR)-AKT (Protein kinase B) axis. SK2 stimulation sets a positive feedback on the signalling pathway, increasing invasiveness in vitro (threefold) and metastasis formation in vivo. The CAF-dependent formation of the signalling hub associating SK2 and AKT requires the sigma-1 receptor chaperone. The pharmacological targeting of Sig-1R abolished CAF-induced activation of SK2, reduced tumour progression and extended the overall survival in mice (11.7 weeks vs 9.5 weeks). CONCLUSION: We establish a new paradigm in which an ion channel shifts the activation level of a signalling pathway in response to stromal cues, opening a new therapeutic window targeting the formation of ion channel-dependent signalling hubs.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt , Carcinogénesis , Transformación Celular Neoplásica , Transducción de Señal , Neoplasias Pancreáticas
9.
J Transl Med ; 21(1): 637, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726776

RESUMEN

BACKGROUND: Anti-PD1/PDL1 immune checkpoint inhibitors (ICI) transformed the prognosis of patients with advanced non-small cell lung cancer (NSCLC). However, the response rate remains disappointing and toxicity may be life-threatening, making urgent identification of biomarkers predictive for efficacy. Immunologic Constant of Rejection signature (ICR) is a 20-gene expression signature of cytotoxic immune response with prognostic value in some solid cancers. Our objective was to assess its predictive value for benefit from anti-PD1/PDL1 in patients with advanced NSCLC. METHODS: We retrospectively profiled 44 primary tumors derived from NSCLC patients treated with ICI as single-agent in at least the second-line metastatic setting. Transcriptomic analysis was performed using the nCounter® analysis system and the PanCancer Immune Profiling Panel. We then pooled our data with clinico-biological data from four public gene expression data sets, leading to a total of 162 NSCLC patients treated with single-agent anti-PD1/PDL1. ICR was applied to all samples and correlation was searched between ICR classes and the Durable Clinical Benefit (DCB), defined as stable disease or objective response according to RECIST 1.1 for a minimum of 6 months after the start of ICI. RESULTS: The DCB rate was 29%; 22% of samples were classified as ICR1, 30% ICR2, 22% ICR3, and 26% ICR4. These classes were not associated with the clinico-pathological variables, but showed enrichment from ICR1 to ICR4 in quantitative/qualitative markers of immune response. ICR2-4 class was associated with a 5.65-fold DCB rate when compared with ICR1 class. In multivariate analysis, ICR classification remained associated with DCB, independently from PDL1 expression and other predictive immune signatures. By contrast, it was not associated with disease-free survival in 556 NSCLC TCGA patients untreated with ICI. CONCLUSION: The 20-gene ICR signature was independently associated with benefit from anti-PD1/PDL1 ICI in patients with advanced NSCLC. Validation in larger retrospective and prospective series is warranted.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Estudios Retrospectivos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Biomarcadores
10.
J Transl Med ; 21(1): 408, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353806

RESUMEN

BACKGROUND: Uterine clear cell carcinomas (CCC) represent less than 5% of uterine cancers. Their biological characteristics and clinical management remain uncertain. A multicenter study to explore both clinical and molecular features of these rare tumors was conducted. METHODS: This multicenter retrospective national study was performed within the French TMRG (Rare Gynecologic Malignant Tumors) network. Clinical data and, when available, FFPE blocks were collected. Clinical features, treatments, and outcome (progression-free survival (PFS) and overall survival (OS)) were analyzed and correlated to the protein (tissue micro-array), RNA (Nanostring nCounter® technology), and DNA (array-Comparative Genomic hybridization and target-next generation sequencing) levels using the tumor samples available. RESULTS: Sixty-eight patients with uterine CCC were enrolled, 61 from endometrial localization and 5 with cervix localization. Median age at diagnosis was 68.9 years old (range 19-89.7). Most tumors were diagnosed at an early stage (78% FIGO stage I-II). Hysterectomy (performed in 90%) and lymph node dissection (80%) were the most frequent surgical treatment. More than 70% of patients received external beam radiotherapy and 57% received brachytherapy. Nearly half (46%) of the patients received chemotherapy. After a median follow-up of 24.7 months, median PFS was 64.8 months (95 CI [5.3-124.4]) and median OS was 79.7 (IC95 [31.0-128.4]). Low hormone receptor expression (13% estrogen-receptor positive), frequent PI3K pathway alterations (58% PTEN loss, 50% PIK3CA mutations), and P53 abnormalities (41%) were observed. Mismatch repair deficiency was identified in 20%. P16 expression was associated with shorter PFS (HR = 5.88, 95 CI [1.56-25], p = 0.009). Transcriptomic analyzes revealed a specific transcriptomic profile notably with a high expression of immune response-associated genes in uterine CCC displaying a very good overall prognosis. CONCLUSIONS: Uterine CCC reported to be potentially MSI high, hormone receptors negative, and sometimes TP53 mutated. However, some patients with immune response-associated features and better prognosis may be candidate to treatment de-escalation and immunotherapy.


Asunto(s)
Carcinoma , Neoplasias Uterinas , Humanos , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Estudios Retrospectivos , Estadificación de Neoplasias , Fosfatidilinositol 3-Quinasas/metabolismo , Hibridación Genómica Comparativa , Neoplasias Uterinas/genética , Neoplasias Uterinas/terapia , Hormonas
11.
J Transl Med ; 20(1): 464, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36221119

RESUMEN

BACKGROUND: Soft tissue sarcomas (STS) are heterogeneous and pro-metastatic tumors. Identification of accurate prognostic factors and novel therapeutic targets are crucial. CSPG4 is a cell surface proteoglycan with oncogenic functions. It recently emerged as a potential target for immunotherapy, including cell therapy based on CSPG4-specific chimeric antigen receptor (CAR)-redirected cytokine-induced killer lymphocytes (CSPG4-CAR.CIKs) in STS. However, expression of CSPG4 is poorly known in STS so far. METHODS: We analyzed CSPG4 gene expression in 1378 localized STS clinical samples, and searched for correlations with clinicopathological data, including disease-free survival (DFS), and with tumor immune features. RESULTS: CSPG4 expression was heterogeneous across samples. High expression was associated with younger patients' age, more frequent undifferentiated pleomorphic sarcoma and myxofibrosarcoma pathological subtypes, more frequent internal trunk tumor site, and more CINSARC high-risk samples. No correlation existed with pathological tumor size and grade, and tumor depth. Patients with high CSPG4 expression displayed 49% (95% CI 42-57) 5-year DFS versus 61% (95% CI 56-68) in patients with low expression (p = 3.17E-03), representing a 49% increased risk of event in the "CSPG4-high" group (HR = 1.49, 95% CI 1.14-1.94). This unfavorable prognostic value persisted in multivariate analysis, independently from other variables. There were significant differences in immune variables between "CSPG4-high" and "CSPG4-low" tumors. The "CSPG4-low" tumors displayed profiles suggesting higher anti-tumor cytotoxic immune response and higher potential vulnerability to immune checkpoint inhibitors (ICI). By contrast, the "CSPG4-high" tumors displayed profiles implying an immune-excluded tumor microenvironment, potentially induced by hypoxia, resulting from an immature chaotic microvasculature, and/or the presence of contractile myofibroblasts. CONCLUSIONS: Patients with "CSPG4-high" STS, theoretically candidate for CAR.CIKs, display shorter DFS and an immune environment unfavorable to vulnerability to CAR.CIKs, which could be improved by combining anti-angiogenic drugs able to normalize the tumor vasculature. By contrast, "CSPG4-low" STS are better candidates for immune therapy involving ICI.


Asunto(s)
Antineoplásicos , Receptores Quiméricos de Antígenos , Sarcoma , Neoplasias de los Tejidos Blandos , Adulto , Inhibidores de la Angiogénesis , Proteoglicanos Tipo Condroitín Sulfato , Citocinas , Humanos , Inhibidores de Puntos de Control Inmunológico , Inmunidad , Proteínas de la Membrana , Pronóstico , Proteoglicanos/metabolismo , Sarcoma/genética , Sarcoma/terapia , Neoplasias de los Tejidos Blandos/patología , Microambiente Tumoral
12.
Biochim Biophys Acta Rev Cancer ; 1869(2): 248-255, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29499330

RESUMEN

Clinico-pathological factors fail to consistently predict the outcome after pancreatic resection for pancreatic ductal adenocarcinoma (PDAC). PDACs show a high level of inter- and intra- tumor genetic heterogeneity. A molecular classification should help sort patients into less heterogeneous and more appropriate groups regarding the metastatic risk and the therapeutic response, with the consequences of better predicting evolution and better orienting the treatment. PDAC can be classified based on mutational subtypes and 18gene alterations. Whole-genome sequencing identified mutational signatures, mutational burden and hyper-mutated tumors with specific DNA repair defects. Their overlap/similarities allow the definition of molecular subtypes. DNA and RNA classifications can be used in prognosis assessment. They are useful in therapeutic choice for they allow the design of approaches that can predict the respective drug sensitivity of each molecular subtype. This review provides a comprehensive analysis of available molecular classifications in PDAC and how this can help guide clinical decisions.


Asunto(s)
Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Técnicas de Diagnóstico Molecular , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Medicina de Precisión , Animales , Carcinoma Ductal Pancreático/clasificación , Carcinoma Ductal Pancreático/patología , Toma de Decisiones Clínicas , Análisis Mutacional de ADN , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Heterogeneidad Genética , Predisposición Genética a la Enfermedad , Humanos , Terapia Molecular Dirigida , Mutación , Neoplasias Pancreáticas/clasificación , Neoplasias Pancreáticas/patología , Fenotipo , Valor Predictivo de las Pruebas , Transcriptoma
13.
Breast Cancer Res Treat ; 180(2): 385-395, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32043194

RESUMEN

PURPOSE: Inflammatory breast cancer (IBC) is an aggressive form of breast cancer with elevated metastatic potential, characterized by tumor emboli in dermal and parenchymal lymph vessels. This study has investigated the hypothesis that TGFß signaling is implicated in the molecular biology of IBC. METHODS: TGFß1-induced cell motility and gene expression patterns were investigated in three IBC and three non-IBC (nIBC) cell lines. Tissue samples from IBC and nIBC patients were investigated for the expression of nuclear SMAD2, SMAD3, and SMAD4. SMAD protein levels were related to gene expression data. RESULTS: TGFß1-induced cell motility was strongly abrogated in IBC cells (P = 0.003). Genes differentially expressed between IBC and nIBC cells post TGFß1 exposure revealed attenuated expression of SMAD3 transcriptional regulators, but overexpression of MYC target genes in IBC. IBC patient samples demonstrated a near absence of SMAD3 and -4 expression in the primary tumor compared to nIBC patient samples (P < 0.001) and a further reduction of staining intensity in tumor emboli. Integration of gene and protein expression data revealed that a substantial fraction of the IBC signature genes correlated with SMAD3 and these genes are indicative of attenuated SMAD3 signaling in IBC. CONCLUSION: We demonstrate attenuated SMAD3 transcriptional activity and SMAD protein expression in IBC, together with obliterated TGFß1-induced IBC cell motility. The further reduction of nuclear SMAD expression levels in tumor emboli suggests that the activity of these transcription factors is involved in the metastatic dissemination of IBC cells, possibly by enabling collective invasion after partial EMT.


Asunto(s)
Movimiento Celular , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Neoplasias Inflamatorias de la Mama/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína smad3/genética , Factor de Crecimiento Transformador beta1/metabolismo , Línea Celular Tumoral , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Neoplasias Inflamatorias de la Mama/genética , Neoplasias Inflamatorias de la Mama/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Transducción de Señal , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/genética
14.
Br J Cancer ; 120(9): 931-940, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30971775

RESUMEN

BACKGROUND: Triple-negative breast cancers (TNBC) are poor-prognosis tumours candidate to chemotherapy as only systemic treatment. We previously found that PRICKLE1, a prometastatic protein involved in planar cell polarity, is upregulated in TNBC. We investigated the protein complex associated with PRICKLE1 in TNBC to identify proteins possibly involved in metastatic dissemination, which might provide new prognostic and/or therapeutic targets. METHODS: We used a proteomic approach to identify protein complexes associated with PRICKLE1. The mRNA expression levels of the corresponding genes were assessed in 8982 patients with invasive primary breast cancer. We then characterised the molecular interaction between PRICKLE1 and the guanine nucleotide exchange factor ECT2. Finally, experiments in Xenopus were carried out to determine their evolutionarily conserved interaction. RESULTS: Among the PRICKLE1 proteins network, we identified several small G-protein regulators. Combined analysis of the expression of PRICKLE1 and small G-protein regulators had a strong prognostic value in TNBC. Notably, the combined expression of ECT2 and PRICKLE1 provided a worst prognosis than PRICKLE1 expression alone in TNBC. PRICKLE1 regulated ECT2 activity and this interaction was evolutionary conserved. CONCLUSIONS: This work supports the idea that an evolutionarily conserved signalling pathway required for embryogenesis and activated in cancer may represent a suitable therapeutic target.


Asunto(s)
Proteínas con Dominio LIM/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Evolución Molecular , Femenino , Humanos , Proteínas con Dominio LIM/genética , Persona de Mediana Edad , Pronóstico , Proteoma/metabolismo , Proteínas Proto-Oncogénicas/genética , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Transcriptoma , Neoplasias de la Mama Triple Negativas/genética , Proteínas Supresoras de Tumor/genética , Xenopus laevis , Proteína de Unión al GTP rac1/metabolismo
15.
Br J Cancer ; 119(11): 1383-1391, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30353048

RESUMEN

BACKGROUND: The immunologic constant of rejection (ICR) is a broad phenomenon of Th-1 immunity-mediated, tissue-specific destruction. METHODS: We tested the prognostic value of a 20-gene ICR expression signature in 8766 early breast cancers. RESULTS: Thirty-three percent of tumours were ICR1, 29% ICR2, 23% ICR3, and 15% ICR4. In univariate analysis, ICR4 was associated with a 36% reduction in risk of metastatic relapse when compared with ICR1-3 (p = 2.30E-03). In multivariate analysis including notably the three major prognostic signatures (Recurrence score, 70-gene signature, ROR-P), ICR was the strongest predictive variable (p = 9.80E-04). ICR showed no prognostic value in the HR+/HER2- subtype, but prognostic value in the HER2+ and TN subtypes. Furthermore, in each molecular subtype and among the tumours defined as high risk by the three prognostic signatures, ICR4 patients had a 41-75% reduction in risk of relapse as compared with ICR1-3 patients. ICR added significant prognostic information to that provided by the clinico-genomic models in the overall population and in each molecular subtype. ICR4 was independently associated with achievement of pathological complete response to neoadjuvant chemotherapy (p = 2.97E-04). CONCLUSION: ICR signature adds prognostic information to that of current proliferation-based signatures, with which it could be integrated to improve patients' stratification and guide adjuvant treatment.


Asunto(s)
Neoplasias de la Mama/patología , Adulto , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/etiología , Neoplasias de la Mama/inmunología , Quimioterapia Adyuvante , Supervivencia sin Enfermedad , Femenino , Humanos , Persona de Mediana Edad , Invasividad Neoplásica , Recurrencia Local de Neoplasia , Pronóstico , Células TH1/inmunología , Resultado del Tratamiento
17.
Blood ; 127(15): 1881-5, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-26941402

RESUMEN

Hematopoietic stem cells (HSCs) give rise to all blood populations due to their long-term self-renewal and multipotent differentiation capacities. Because they have to persist throughout an organism's life span, HSCs tightly regulate the balance between proliferation and quiescence. Here, we investigated the role of the transcription factor promyelocytic leukemia zinc finger (plzf) in HSC fate using the Zbtb16(lu/lu)mouse model, which harbors a natural spontaneous mutation that inactivates plzf. Regenerative stress revealed that Zbtb16(lu/lu)HSCs had a lineage-skewing potential from lymphopoiesis toward myelopoiesis, an increase in the long-term-HSC pool, and a decreased repopulation potential. Furthermore, oldplzf-mutant HSCs present an amplified aging phenotype, suggesting that plzf controls age-related pathway. We found that Zbtb16(lu/lu)HSCs harbor a transcriptional signature associated with a loss of stemness and cell cycle deregulation. Lastly, cell cycle analyses revealed an important role for plzf in the regulation of the G1-S transition of HSCs. Our study reveals a new role for plzf in regulating HSC function that is linked to cell cycle regulation, and positions plzf as a key player in controlling HSC homeostasis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Células Madre Hematopoyéticas/citología , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/fisiología , Mutación , Animales , Apoptosis , Ciclo Celular , Diferenciación Celular , Linaje de la Célula , Senescencia Celular , Epigénesis Genética , Perfilación de la Expresión Génica , Homeostasis , Linfopoyesis , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mielopoyesis , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Proteína de la Leucemia Promielocítica con Dedos de Zinc
18.
Mol Cancer ; 16(1): 168, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-29110659

RESUMEN

Four molecular classifications of pancreatic ductal adenocarcinoma (PDAC), biologically and clinically relevant and based on gene expression profiles, were established in the recent years, including the Collisson's, Moffitt's ("tumor" and "stroma" classifications), and Bailey's classifications. The aim of this study was to validate the prognostic value of the Moffitt's classifications and to compare the Collisson's, Moffitt's, and Bailey's classifications in a large series of samples. We collected clinical and gene expression data of PDAC samples from 15 public data sets, resulting in a total of 846 primary cancer samples, including 601 with survival annotation. All samples were classified according to each of the four multigene classifiers. We confirmed the independent prognostic value of the Moffitt "tumor", Moffitt "stroma", and Bailey's classifications, but not that of the Collisson's classification. Despite a relatively low gene overlap, all classifications were associated with pathological grade, an important prognostic feature and reflect of intrinsic molecular characteristics of tumors. The concordance rate in term of "good-prognosis" vs. "poor-prognosis" prediction by classifiers was relatively high (from 73 to 86%) between the three "tumor" classifications based on tumor gene lists (Collisson, Moffitt "tumor", Bailey), but low (from 50 to 60%) with the Moffitt's stroma classification based on stroma genes. Multivariate analysis incorporating the four classifiers together retained as significant variables the Moffitt "stroma" and Bailey classifications, highlighting the complementarity of classifiers based on tumor epithelium (Bailey) and tumor stroma (Moffitt stroma). Our results reinforce the clinical validity of subtyping in PDAC, which should be regarded as a collection of separate diseases. Beside their clinical utility that remains to be demonstrated, the clinical interest of the subtypes, notably those from Bailey's and Moffitt's "stroma" classifiers that show independent prognostic value, will be reinforced by the identification of new biomarkers and/or therapeutic targets in each subtype for designing and testing novel specific targeted therapies.


Asunto(s)
Neoplasias Pancreáticas/genética , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Estimación de Kaplan-Meier , Neoplasias Pancreáticas/patología , Pronóstico , Modelos de Riesgos Proporcionales , Neoplasias Pancreáticas
19.
BMC Med ; 15(1): 170, 2017 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-28927421

RESUMEN

BACKGROUND: Pancreatic carcinoma is one of the most lethal human cancers. In patients with resectable tumors, surgery followed by adjuvant chemotherapy is the only curative treatment. However, the 5-year survival is 20%. Because of a strong metastatic propensity, neoadjuvant chemotherapy is being tested in randomized clinical trials. In this context, improving the selection of patients for immediate surgery or neoadjuvant chemotherapy is crucial, and high-throughput molecular analyses may help; the present study aims to address this. METHODS: Clinicopathological and gene expression data of 695 pancreatic carcinoma samples were collected from nine datasets and supervised analysis was applied to search for a gene expression signature predictive for overall survival (OS) in the 601 informative operated patients. The signature was identified in a learning set of patients and tested for its robustness in a large independent validation set. RESULTS: Supervised analysis identified 1400 genes differentially expressed between two selected patient groups in the learning set, namely 17 long-term survivors (LTS; ≥ 36 months after surgery) and 22 short-term survivors (STS; dead of disease between 2 and 6 months after surgery). From these, a 25-gene prognostic classifier was developed, which identified two classes ("STS-like" and "LTS-like") in the independent validation set (n = 562), with a 25% (95% CI 18-33) and 48% (95% CI 42-54) 2-year OS (P = 4.33 × 10-9), respectively. Importantly, the prognostic value of this classifier was independent from both clinicopathological prognostic features and molecular subtypes in multivariate analysis, and existed in each of the nine datasets separately. The generation of 100,000 random gene signatures by a resampling scheme showed the non-random nature of our prognostic classifier. CONCLUSION: This study, the largest prognostic study of gene expression profiles in pancreatic carcinoma, reports a 25-gene signature associated with post-operative OS independently of classical factors and molecular subtypes. This classifier may help select patients with resectable disease for either immediate surgery (the LTS-like class) or neoadjuvant chemotherapy (the STS-like class). Its assessment in the current prospective trials of adjuvant and neoadjuvant chemotherapy trials is warranted, as well as the functional analysis of the classifier genes, which may provide new therapeutic targets.


Asunto(s)
Quimioterapia Adyuvante/métodos , Neoplasias Pancreáticas/genética , Transcriptoma/genética , Anciano , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Pronóstico , Estudios Prospectivos , Análisis de Supervivencia , Neoplasias Pancreáticas
20.
Int J Mol Sci ; 19(1)2017 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-29295532

RESUMEN

Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. Identification of new therapeutic targets is crucial. MARCKS, myristoylated alanine-rich C-kinase substrate, has been implicated in aggressiveness of several cancers and MARCKS inhibitors are in development. Using immunohistochemistry (IHC), we retrospectively assessed MARCKS expression in epithelial and stromal cells of 118 pre-chemotherapy EOC samples and 40 normal ovarian samples from patients treated at Salah Azaiez Institute. We compared MARCKS expression in normal versus cancer samples, and searched for correlations with clinicopathological features, including overall survival (OS). Seventy-five percent of normal samples showed positive epithelial MARCKS staining versus 50% of tumor samples (p = 6.02 × 10-3). By contrast, stromal MARCKS expression was more frequent in tumor samples (77%) than in normal samples (22%; p = 1.41 × 10-9). There was no correlation between epithelial and stromal IHC MARCKS statutes and prognostic clinicopathological features. Stromal MARCKS expression was correlated with shorter poor OS in uni- and multivariate analyses. Stromal MARCKS overexpression in tumors might contribute to cancer-associated fibroblasts activation and to the poor prognosis of EOC, suggesting a potential therapeutic interest of MARCKS inhibition for targeting the cooperative tumor stroma.


Asunto(s)
Sustrato de la Proteína Quinasa C Rico en Alanina Miristoilada/metabolismo , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma Epitelial de Ovario , Línea Celular Tumoral , Femenino , Humanos , Persona de Mediana Edad , Análisis Multivariante , Neoplasias Glandulares y Epiteliales/metabolismo , Neoplasias Glandulares y Epiteliales/patología , Pronóstico , Células del Estroma/metabolismo , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA