Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-37662301

RESUMEN

Flexible responses to sensory stimuli based on changing rules are critical for adapting to a dynamic environment. However, it remains unclear how the brain encodes rule information and uses this information to guide behavioral responses to sensory stimuli. Here, we made single-unit recordings while head-fixed mice performed a cross-modal sensory selection task in which they switched between two rules in different blocks of trials: licking in response to tactile stimuli applied to a whisker while rejecting visual stimuli, or licking to visual stimuli while rejecting the tactile stimuli. Along a cortical sensorimotor processing stream including the primary (S1) and secondary (S2) somatosensory areas, and the medial (MM) and anterolateral (ALM) motor areas, the single-trial activity of individual neurons distinguished between the two rules both prior to and in response to the tactile stimulus. Variable rule-dependent responses to identical stimuli could in principle occur via appropriate configuration of pre-stimulus preparatory states of a neural population, which would shape the subsequent response. We hypothesized that neural populations in S1, S2, MM and ALM would show preparatory activity states that were set in a rule-dependent manner to cause processing of sensory information according to the current rule. This hypothesis was supported for the motor cortical areas by findings that (1) the current task rule could be decoded from pre-stimulus population activity in ALM and MM; (2) neural subspaces containing the population activity differed between the two rules; and (3) optogenetic disruption of pre-stimulus states within ALM and MM impaired task performance. Our findings indicate that flexible selection of an appropriate action in response to a sensory input can occur via configuration of preparatory states in the motor cortex.

2.
Elife ; 122024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842277

RESUMEN

Flexible responses to sensory stimuli based on changing rules are critical for adapting to a dynamic environment. However, it remains unclear how the brain encodes and uses rule information to guide behavior. Here, we made single-unit recordings while head-fixed mice performed a cross-modal sensory selection task where they switched between two rules: licking in response to tactile stimuli while rejecting visual stimuli, or vice versa. Along a cortical sensorimotor processing stream including the primary (S1) and secondary (S2) somatosensory areas, and the medial (MM) and anterolateral (ALM) motor areas, single-neuron activity distinguished between the two rules both prior to and in response to the tactile stimulus. We hypothesized that neural populations in these areas would show rule-dependent preparatory states, which would shape the subsequent sensory processing and behavior. This hypothesis was supported for the motor cortical areas (MM and ALM) by findings that (1) the current task rule could be decoded from pre-stimulus population activity; (2) neural subspaces containing the population activity differed between the two rules; and (3) optogenetic disruption of pre-stimulus states impaired task performance. Our findings indicate that flexible action selection in response to sensory input can occur via configuration of preparatory states in the motor cortex.


Asunto(s)
Corteza Motora , Animales , Ratones , Corteza Motora/fisiología , Masculino , Corteza Somatosensorial/fisiología , Neuronas/fisiología , Femenino , Optogenética , Conducta Animal/fisiología
3.
Cell Rep ; 43(4): 113991, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38573855

RESUMEN

The brain receives constant tactile input, but only a subset guides ongoing behavior. Actions associated with tactile stimuli thus endow them with behavioral relevance. It remains unclear how the relevance of tactile stimuli affects processing in the somatosensory (S1) cortex. We developed a cross-modal selection task in which head-fixed mice switched between responding to tactile stimuli in the presence of visual distractors or to visual stimuli in the presence of tactile distractors using licking movements to the left or right side in different blocks of trials. S1 spiking encoded tactile stimuli, licking actions, and direction of licking in response to tactile but not visual stimuli. Bidirectional optogenetic manipulations showed that sensory-motor activity in S1 guided behavior when touch but not vision was relevant. Our results show that S1 activity and its impact on behavior depend on the actions associated with a tactile stimulus.


Asunto(s)
Corteza Somatosensorial , Animales , Ratones , Corteza Somatosensorial/fisiología , Masculino , Tacto/fisiología , Ratones Endogámicos C57BL , Optogenética , Percepción del Tacto/fisiología , Conducta Animal , Femenino
4.
Neuron ; 110(3): 486-501.e7, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34863367

RESUMEN

The claustrum, a subcortical nucleus forming extensive connections with the neocortex, has been implicated in sensory selection. Sensory-evoked claustrum activity is thought to modulate the neocortex's context-dependent response to sensory input. Recording from claustrum neurons while mice performed a tactile-visual sensory-selection task, we found that neurons in the anterior claustrum, including putative optotagged claustrocortical neurons projecting to the primary somatosensory cortex (S1), were rarely modulated by sensory input. Rather, they exhibited different types of direction-tuned motor responses. Furthermore, we found that claustrum neurons encoded upcoming movement during intertrial intervals and that pairs of claustrum neurons exhibiting synchronous firing were enriched for pairs preferring contralateral lick directions, suggesting that the activity of specific ensembles of similarly tuned claustrum neurons may modulate cortical activity. Chemogenetic inhibition of claustrocortical neurons decreased lick responses to inappropriate sensory stimuli. Altogether, our data indicate that the claustrum is integrated into higher-order premotor circuits recently implicated in decision-making.


Asunto(s)
Claustro , Neocórtex , Animales , Ganglios Basales/fisiología , Ratones , Vías Nerviosas/fisiología , Neuronas/fisiología
5.
Neuron ; 97(1): 1-2, 2018 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-29301096

RESUMEN

How the brain maps sensory information to adaptive behavior remains unresolved. A new study in this issue of Neuron (Le Merre et al., 2017) uncovers learning-related recruitment of higher cortical areas into the rapid sensory processing stream that links a whisker stimulus to rewarded action.


Asunto(s)
Objetivos , Aprendizaje , Animales , Hipocampo , Corteza Prefrontal , Recompensa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA