Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ecol Appl ; 29(6): e01950, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31187919

RESUMEN

Assessing the statistical power to detect changes in wildlife populations is a crucial yet often overlooked step when designing and evaluating monitoring programs. Here, we developed a simulation framework to perform spatially explicit statistical power analysis of biological monitoring programs for detecting temporal trends in occupancy for multiple species. Using raster layers representing the spatial variation in current occupancy and species-level detectability for one or multiple observation methods, our framework simulates changes in occupancy over space and time, with the capacity to explicitly model stochastic disturbances at monitoring sites (i.e., dynamic landscapes). Once users specify the number and location of sites, the frequency and duration of surveys, and the type of detection method(s) for each species, our framework estimates power to detect occupancy trends, both across the landscape and/or within nested management units. As a case study, we evaluated the power of a long-term monitoring program to detect trends in occupancy for 136 species (83 birds, 33 reptiles, and 20 mammals) across and within Kakadu, Litchfield, and Nitmiluk National Parks in northern Australia. We assumed continuation of an original monitoring design implemented since 1996, with the addition of camera trapping. As expected, power to detect trends was sensitive to the direction and magnitude of the change in occupancy, detectability, initial occupancy levels, and the rarity of species. Our simulations suggest that monitoring has at least an 80% chance at detecting a 50% decline in occupancy for 22% of the modeled species across the three parks over the next 15 yr. Monitoring is more likely to detect increasing occupancy trends, with at least an 80% chance at detecting a 50% increase in 87% of species. The addition of camera-trapping increased average power to detect a 50% decline in mammals compared with using only live trapping by 63%. We provide a flexible tool that can help decision-makers design and evaluate monitoring programs for hundreds of species at a time in a range of ecological settings, while explicitly considering the distribution of species and alternative sampling methods.


Asunto(s)
Aves , Ecosistema , Animales , Australia , Ecología , Monitoreo del Ambiente
2.
PLoS One ; 13(9): e0203304, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30248104

RESUMEN

Understanding where species occur and how difficult they are to detect during surveys is crucial for designing and evaluating monitoring programs, and has broader applications for conservation planning and management. In this study, we modelled occupancy and the effectiveness of six sampling methods at detecting vertebrates across the Top End of northern Australia. We fitted occupancy-detection models to 136 species (83 birds, 33 reptiles, 20 mammals) of 242 recorded during surveys of 333 sites in eight conservation reserves between 2011 and 2016. For modelled species, mean occupancy was highly variable: birds and reptiles ranged from 0.01-0.81 and 0.01-0.49, respectively, whereas mammal occupancy was lower, ranging from 0.02-0.30. Of the 11 environmental covariates considered as potential predictors of occupancy, topographic ruggedness, elevation, maximum temperature, and fire frequency were retained more readily in the top models. Using these models, we predicted species occupancy across the Top End of northern Australia (293,017 km2) and generated species richness maps for each species group. For mammals and reptiles, high richness was associated with rugged terrain, while bird richness was highest in coastal lowland woodlands. On average, detectability of diurnal birds was higher per day of surveys (0.33 ± 0.09) compared with nocturnal birds per night of spotlighting (0.13 ± 0.06). Detectability of reptiles was similar per day/night of pit trapping (0.30 ± 0.09) as per night of spotlighting (0.29 ± 0.11). On average, mammals were highly detectable using motion-sensor cameras for a week (0.36 ± 0.06), with exception of smaller-bodied species. One night of Elliott trapping (0.20 ± 0.06) and spotlighting (0.19 ± 0.06) was more effective at detecting mammals than cage (0.08 ± 0.03) and pit trapping (0.05 ± 0.04). Our estimates of species occupancy and detectability will help inform decisions about how best to redesign a long-running vertebrate monitoring program in the Top End of northern Australia.


Asunto(s)
Monitoreo del Ambiente/métodos , Vertebrados , Animales , Biodiversidad , Aves , Ritmo Circadiano , Conservación de los Recursos Naturales , Ecosistema , Monitoreo del Ambiente/estadística & datos numéricos , Mamíferos , Modelos Biológicos , Northern Territory , Dinámica Poblacional/estadística & datos numéricos , Reptiles , Muestreo , Especificidad de la Especie , Encuestas y Cuestionarios
3.
PLoS One ; 13(10): e0206373, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30335847

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0203304.].

4.
Sci Total Environ ; 634: 382-393, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29627562

RESUMEN

An unprecedented rate of global environmental change is predicted for the next century. The response to this change by ecosystems around the world is highly uncertain. To address this uncertainty, it is critical to understand the potential drivers and mechanisms of change in order to develop more reliable predictions. Australia's Long Term Ecological Research Network (LTERN) has brought together some of the longest running (10-60years) continuous environmental monitoring programs in the southern hemisphere. Here, we compare climatic variables recorded at five LTERN plot network sites during their period of operation and place them into the context of long-term climatic trends. Then, using our unique Australian long-term datasets (total 117 survey years across four biomes), we synthesize results from a series of case studies to test two hypotheses: 1) extreme weather events for each plot network have increased over the last decade, and; 2) trends in biodiversity will be associated with recent climate change, either directly or indirectly through climate-mediated disturbance (wildfire) responses. We examined the biodiversity responses to environmental change for evidence of non-linear behavior. In line with hypothesis 1), an increase in extreme climate events occurred within the last decade for each plot network. For hypothesis 2), climate, wildfire, or both were correlated with biodiversity responses at each plot network, but there was no evidence of non-linear change. However, the influence of climate or fire was context-specific. Biodiversity responded to recent climate change either directly or indirectly as a consequence of changes in fire regimes or climate-mediated fire responses. A national long-term monitoring framework allowed us to find contrasting species abundance or community responses to climate and disturbance across four of the major biomes of Australia, highlighting the need to establish and resource long-term monitoring programs across representative ecosystem types, which are likely to show context-specific responses.

5.
PLoS One ; 10(6): e0130626, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26111037

RESUMEN

Australia has experienced dramatic declines and extinctions of its native rodent species over the last 200 years, particularly in southern Australia. In the tropical savanna of northern Australia significant declines have occurred only in recent decades. The later onset of these declines suggests that the causes may differ from earlier declines in the south. We examine potential regional effects (northern versus southern Australia) on biological and ecological correlates of range decline in Australian rodents. We demonstrate that rodent declines have been greater in the south than in the tropical north, are strongly influenced by phylogeny, and are consistently greater for species inhabiting relatively open or sparsely vegetated habitat. Unlike in marsupials, where some species have much larger body size than rodents, body mass was not an important predictor of decline in rodents. All Australian rodent species are within the prey-size range of cats (throughout the continent) and red foxes (in the south). Contrary to the hypothesis that mammal declines are related directly to ecosystem productivity (annual rainfall), our results are consistent with the hypothesis that disturbances such as fire and grazing, which occur in non-rainforest habitats and remove cover used by rodents for shelter, nesting and foraging, increase predation risk. We agree with calls to introduce conservation management that limits the size and intensity of fires, increases fire patchiness and reduces grazing impacts at ecological scales appropriate for rodents. Controlling feral predators, even creating predator-free reserves in relatively sparsely-vegetated habitats, is urgently required to ensure the survival of rodent species, particularly in northern Australia where declines are not yet as severe as those in the south.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Cadena Alimentaria , Animales , Australia , Zorros , Marsupiales , Dinámica Poblacional , Conducta Predatoria , Roedores , Australia del Sur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA