Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(20): e2218782120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155867

RESUMEN

Gender inequality across the world has been associated with a higher risk to mental health problems and lower academic achievement in women compared to men. We also know that the brain is shaped by nurturing and adverse socio-environmental experiences. Therefore, unequal exposure to harsher conditions for women compared to men in gender-unequal countries might be reflected in differences in their brain structure, and this could be the neural mechanism partly explaining women's worse outcomes in gender-unequal countries. We examined this through a random-effects meta-analysis on cortical thickness and surface area differences between adult healthy men and women, including a meta-regression in which country-level gender inequality acted as an explanatory variable for the observed differences. A total of 139 samples from 29 different countries, totaling 7,876 MRI scans, were included. Thickness of the right hemisphere, and particularly the right caudal anterior cingulate, right medial orbitofrontal, and left lateral occipital cortex, presented no differences or even thicker regional cortices in women compared to men in gender-equal countries, reversing to thinner cortices in countries with greater gender inequality. These results point to the potentially hazardous effect of gender inequality on women's brains and provide initial evidence for neuroscience-informed policies for gender equality.


Asunto(s)
Encéfalo , Equidad de Género , Masculino , Adulto , Humanos , Femenino , Encéfalo/diagnóstico por imagen , Factores Sexuales
2.
Neuroimage ; 295: 120636, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38777219

RESUMEN

Diversity in brain health is influenced by individual differences in demographics and cognition. However, most studies on brain health and diseases have typically controlled for these factors rather than explored their potential to predict brain signals. Here, we assessed the role of individual differences in demographics (age, sex, and education; n = 1298) and cognition (n = 725) as predictors of different metrics usually used in case-control studies. These included power spectrum and aperiodic (1/f slope, knee, offset) metrics, as well as complexity (fractal dimension estimation, permutation entropy, Wiener entropy, spectral structure variability) and connectivity (graph-theoretic mutual information, conditional mutual information, organizational information) from the source space resting-state EEG activity in a diverse sample from the global south and north populations. Brain-phenotype models were computed using EEG metrics reflecting local activity (power spectrum and aperiodic components) and brain dynamics and interactions (complexity and graph-theoretic measures). Electrophysiological brain dynamics were modulated by individual differences despite the varied methods of data acquisition and assessments across multiple centers, indicating that results were unlikely to be accounted for by methodological discrepancies. Variations in brain signals were mainly influenced by age and cognition, while education and sex exhibited less importance. Power spectrum activity and graph-theoretic measures were the most sensitive in capturing individual differences. Older age, poorer cognition, and being male were associated with reduced alpha power, whereas older age and less education were associated with reduced network integration and segregation. Findings suggest that basic individual differences impact core metrics of brain function that are used in standard case-control studies. Considering individual variability and diversity in global settings would contribute to a more tailored understanding of brain function.


Asunto(s)
Encéfalo , Cognición , Electroencefalografía , Humanos , Masculino , Femenino , Adulto , Cognición/fisiología , Persona de Mediana Edad , Encéfalo/fisiología , Anciano , Adulto Joven , Individualidad , Adolescente , Factores de Edad , Envejecimiento/fisiología
3.
Alzheimers Dement ; 20(2): 925-940, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37823470

RESUMEN

INTRODUCTION: Verbal fluency tasks are common in Alzheimer's disease (AD) assessments. Yet, standard valid response counts fail to reveal disease-specific semantic memory patterns. Here, we leveraged automated word-property analysis to capture neurocognitive markers of AD vis-à-vis behavioral variant frontotemporal dementia (bvFTD). METHODS: Patients and healthy controls completed two fluency tasks. We counted valid responses and computed each word's frequency, granularity, neighborhood, length, familiarity, and imageability. These features were used for group-level discrimination, patient-level identification, and correlations with executive and neural (magnetic resonanance imaging [MRI], functional MRI [fMRI], electroencephalography [EEG]) patterns. RESULTS: Valid responses revealed deficits in both disorders. Conversely, frequency, granularity, and neighborhood yielded robust group- and subject-level discrimination only in AD, also predicting executive outcomes. Disease-specific cortical thickness patterns were predicted by frequency in both disorders. Default-mode and salience network hypoconnectivity, and EEG beta hypoconnectivity, were predicted by frequency and granularity only in AD. DISCUSSION: Word-property analysis of fluency can boost AD characterization and diagnosis. HIGHLIGHTS: We report novel word-property analyses of verbal fluency in AD and bvFTD. Standard valid response counts captured deficits and brain patterns in both groups. Specific word properties (e.g., frequency, granularity) were altered only in AD. Such properties predicted cognitive and neural (MRI, fMRI, EEG) patterns in AD. Word-property analysis of fluency can boost AD characterization and diagnosis.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Humanos , Enfermedad de Alzheimer/diagnóstico , Pruebas Neuropsicológicas , Encéfalo/diagnóstico por imagen , Memoria , Imagen por Resonancia Magnética , Demencia Frontotemporal/diagnóstico , Trastornos de la Memoria
4.
Alzheimers Dement ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39382098

RESUMEN

INTRODUCTION: Early detection of both objective and subjective cognitive impairment is important. Subjective complaints in healthy individuals can precede objective deficits. However, the differential associations of objective and subjective cognition with modifiable dementia risk factors are unclear. METHODS: We gathered a large cross-sectional sample (N = 3327, age 18 to 84) via a smartphone app and quantified the associations of 13 risk factors with subjective memory problems and three objective measures of executive function (visual working memory, cognitive flexibility, model-based planning). RESULTS: Depression, socioeconomic status, hearing handicap, loneliness, education, smoking, tinnitus, little exercise, small social network, stroke, diabetes, and hypertension were all associated with impairments in at least one cognitive measure. Subjective memory had the strongest link to most factors; these associations persisted after controlling for depression. Age mostly did not moderate these associations. DISCUSSION: Subjective cognition was more sensitive to self-report risk factors than objective cognition. Smartphones could facilitate detecting the earliest cognitive impairments. HIGHLIGHTS: Smartphone assessments of cognition were sensitive to dementia risk factors. Subjective cognition had stronger links to most factors than did objective cognition. These associations were not fully explained by depression. These associations were largely consistent across the lifespan.

5.
Alzheimers Dement ; 20(5): 3228-3250, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38501336

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) lack mechanistic biophysical modeling in diverse, underrepresented populations. Electroencephalography (EEG) is a high temporal resolution, cost-effective technique for studying dementia globally, but lacks mechanistic models and produces non-replicable results. METHODS: We developed a generative whole-brain model that combines EEG source-level metaconnectivity, anatomical priors, and a perturbational approach. This model was applied to Global South participants (AD, bvFTD, and healthy controls). RESULTS: Metaconnectivity outperformed pairwise connectivity and revealed more viscous dynamics in patients, with altered metaconnectivity patterns associated with multimodal disease presentation. The biophysical model showed that connectome disintegration and hypoexcitability triggered altered metaconnectivity dynamics and identified critical regions for brain stimulation. We replicated the main results in a second subset of participants for validation with unharmonized, heterogeneous recording settings. DISCUSSION: The results provide a novel agenda for developing mechanistic model-inspired characterization and therapies in clinical, translational, and computational neuroscience settings.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Electroencefalografía , Demencia Frontotemporal , Humanos , Demencia Frontotemporal/fisiopatología , Demencia Frontotemporal/patología , Encéfalo/fisiopatología , Encéfalo/patología , Femenino , Enfermedad de Alzheimer/fisiopatología , Masculino , Anciano , Conectoma , Persona de Mediana Edad , Modelos Neurológicos
6.
Neuroimage ; 276: 120200, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37245560

RESUMEN

Anticipating social stress evokes strong reactions in the organism, including interoceptive modulations. However, evidence for this claim comes from behavioral studies, often with inconsistent results, and relates almost solely to the reactive and recovery phase of social stress exposure. Here, we adopted an allostatic-interoceptive predictive coding framework to study interoceptive and exteroceptive anticipatory brain responses using a social rejection task. We analyzed the heart-evoked potential (HEP) and task-related oscillatory activity of 58 adolescents via scalp EEG, and 385 human intracranial recordings of three patients with intractable epilepsy. We found that anticipatory interoceptive signals increased in the face of unexpected social outcomes, reflected in larger negative HEP modulations. Such signals emerged from key brain allostatic-interoceptive network hubs, as shown by intracranial recordings. Exteroceptive signals were characterized by early activity between 1-15 Hz across conditions, and modulated by the probabilistic anticipation of reward-related outcomes, observed over distributed brain regions. Our findings suggest that the anticipation of a social outcome is characterized by allostatic-interoceptive modulations that prepare the organism for possible rejection. These results inform our understanding of interoceptive processing and constrain neurobiological models of social stress.


Asunto(s)
Interocepción , Estatus Social , Adolescente , Humanos , Encéfalo/fisiología , Potenciales Evocados/fisiología , Electroencefalografía , Corazón , Interocepción/fisiología
7.
Neurobiol Dis ; 183: 106171, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37257663

RESUMEN

Although social functioning relies on working memory, whether a social-specific mechanism exists remains unclear. This undermines the characterization of neurodegenerative conditions with both working memory and social deficits. We assessed working memory domain-specificity across behavioral, electrophysiological, and neuroimaging dimensions in 245 participants. A novel working memory task involving social and non-social stimuli with three load levels was assessed across controls and different neurodegenerative conditions with recognized impairments in: working memory and social cognition (behavioral-variant frontotemporal dementia); general cognition (Alzheimer's disease); and unspecific patterns (Parkinson's disease). We also examined resting-state theta oscillations and functional connectivity correlates of working memory domain-specificity. Results in controls and all groups together evidenced increased working memory demands for social stimuli associated with frontocinguloparietal theta oscillations and salience network connectivity. Canonical frontal theta oscillations and executive-default mode network anticorrelation indexed non-social stimuli. Behavioral-variant frontotemporal dementia presented generalized working memory deficits related to posterior theta oscillations, with social stimuli linked to salience network connectivity. In Alzheimer's disease, generalized working memory impairments were related to temporoparietal theta oscillations, with non-social stimuli linked to the executive network. Parkinson's disease showed spared working memory performance and canonical brain correlates. Findings support a social-specific working memory and related disease-selective pathophysiological mechanisms.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Enfermedad de Parkinson , Humanos , Memoria a Corto Plazo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Pruebas Neuropsicológicas
8.
Neurobiol Dis ; 179: 106047, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36841423

RESUMEN

Brain functional connectivity in dementia has been assessed with dissimilar EEG connectivity metrics and estimation procedures, thereby increasing results' heterogeneity. In this scenario, joint analyses integrating information from different metrics may allow for a more comprehensive characterization of brain functional interactions in different dementia subtypes. To test this hypothesis, resting-state electroencephalogram (rsEEG) was recorded in individuals with Alzheimer's Disease (AD), behavioral variant frontotemporal dementia (bvFTD), and healthy controls (HCs). Whole-brain functional connectivity was estimated in the EEG source space using 101 different types of functional connectivity, capturing linear and nonlinear interactions in both time and frequency-domains. Multivariate machine learning and progressive feature elimination was run to discriminate AD from HCs, and bvFTD from HCs, based on joint analyses of i) EEG frequency bands, ii) complementary frequency-domain metrics (e.g., instantaneous, lagged, and total connectivity), and iii) time-domain metrics with different linearity assumption (e.g., Pearson correlation coefficient and mutual information). <10% of all possible connections were responsible for the differences between patients and controls, and atypical connectivity was never captured by >1/4 of all possible connectivity measures. Joint analyses revealed patterns of hypoconnectivity (patientsHCs) in both groups was mainly identified in frontotemporal regions. These atypicalities were differently captured by frequency- and time-domain connectivity metrics, in a bandwidth-specific fashion. The multi-metric representation of source space whole-brain functional connectivity evidenced the inadequacy of single-metric approaches, and resulted in a valid alternative for the selection problem in EEG connectivity. These joint analyses reveal patterns of brain functional interdependence that are overlooked with single metrics approaches, contributing to a more reliable and interpretable description of atypical functional connectivity in neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Conectoma , Demencia Frontotemporal , Vías Nerviosas , Anciano , Femenino , Humanos , Masculino , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/fisiopatología , Electroencefalografía , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Frontal/fisiopatología , Demencia Frontotemporal/diagnóstico por imagen , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/fisiopatología , Imagen por Resonancia Magnética , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiopatología , Reproducibilidad de los Resultados , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiopatología
9.
Eur J Neurosci ; 57(4): 705-717, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36628571

RESUMEN

Social emotions are critical to successfully navigate in a complex social world because they promote self-regulation of behaviour. Difficulties in social behaviour are at the core of autism spectrum disorder (ASD). However, social emotions and their neural correlates have been scarcely investigated in this population. In particular, the experience of envy has not been addressed in ASD despite involving neurocognitive processes crucially compromised in this condition. Here, we used an fMRI adapted version of a well-validated task to investigate the subjective experience of envy and its neural correlates in adults with ASD (n = 30) in comparison with neurotypical controls (n = 28). Results revealed that both groups reported similarly intense experience of envy in association with canonical activation in the anterior cingulate cortex and the anterior insula, among other regions. However, in participants with ASD, the experience of envy was accompanied by overactivation of the posterior insula, the postcentral gyrus and the posterior superior temporal gyrus, regions subserving the processing of painful experiences and mentalizing. This pattern of results suggests that individuals with ASD may use compensatory strategies based on the embodied amplification of pain and additional mentalizing efforts to shape their subjective experience of envy. Results have relevant implications to better understand the heterogeneity of this condition and to develop new intervention targets.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Adulto , Humanos , Celos , Trastorno Autístico/diagnóstico por imagen , Trastorno del Espectro Autista/diagnóstico por imagen , Mapeo Encefálico/métodos , Lóbulo Temporal/diagnóstico por imagen , Imagen por Resonancia Magnética , Dolor
10.
Brain ; 145(3): 1052-1068, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-34529034

RESUMEN

Social feedback can selectively enhance learning in diverse domains. Relevant neurocognitive mechanisms have been studied mainly in healthy persons, yielding correlational findings. Neurodegenerative lesion models, coupled with multimodal brain measures, can complement standard approaches by revealing direct multidimensional correlates of the phenomenon. To this end, we assessed socially reinforced and non-socially reinforced learning in 40 healthy participants as well as persons with behavioural variant frontotemporal dementia (n = 21), Parkinson's disease (n = 31) and Alzheimer's disease (n = 20). These conditions are typified by predominant deficits in social cognition, feedback-based learning and associative learning, respectively, although all three domains may be partly compromised in the other conditions. We combined a validated behavioural task with ongoing EEG signatures of implicit learning (medial frontal negativity) and offline MRI measures (voxel-based morphometry). In healthy participants, learning was facilitated by social feedback relative to non-social feedback. In comparison with controls, this effect was specifically impaired in behavioural variant frontotemporal dementia and Parkinson's disease, while unspecific learning deficits (across social and non-social conditions) were observed in Alzheimer's disease. EEG results showed increased medial frontal negativity in healthy controls during social feedback and learning. Such a modulation was selectively disrupted in behavioural variant frontotemporal dementia. Neuroanatomical results revealed extended temporo-parietal and fronto-limbic correlates of socially reinforced learning, with specific temporo-parietal associations in behavioural variant frontotemporal dementia and predominantly fronto-limbic regions in Alzheimer's disease. In contrast, non-socially reinforced learning was consistently linked to medial temporal/hippocampal regions. No associations with cortical volume were found in Parkinson's disease. Results are consistent with core social deficits in behavioural variant frontotemporal dementia, subtle disruptions in ongoing feedback-mechanisms and social processes in Parkinson's disease and generalized learning alterations in Alzheimer's disease. This multimodal approach highlights the impact of different neurodegenerative profiles on learning and social feedback. Our findings inform a promising theoretical and clinical agenda in the fields of social learning, socially reinforced learning and neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Enfermedad de Alzheimer/patología , Encéfalo/patología , Demencia Frontotemporal/patología , Humanos , Enfermedades Neurodegenerativas/patología , Enfermedad de Parkinson/patología
11.
Cereb Cortex ; 33(2): 403-420, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-35253864

RESUMEN

BACKGROUND: Processing of linguistic negation has been associated to inhibitory brain mechanisms. However, no study has tapped this link via multimodal measures in patients with core inhibitory alterations, a critical approach to reveal direct neural correlates and potential disease markers. METHODS: Here we examined oscillatory, neuroanatomical, and functional connectivity signatures of a recently reported Go/No-go negation task in healthy controls and behavioral variant frontotemporal dementia (bvFTD) patients, typified by primary and generalized inhibitory disruptions. To test for specificity, we also recruited persons with Alzheimer's disease (AD), a disease involving frequent but nonprimary inhibitory deficits. RESULTS: In controls, negative sentences in the No-go condition distinctly involved frontocentral delta (2-3 Hz) suppression, a canonical inhibitory marker. In bvFTD patients, this modulation was selectively abolished and significantly correlated with the volume and functional connectivity of regions supporting inhibition (e.g. precentral gyrus, caudate nucleus, and cerebellum). Such canonical delta suppression was preserved in the AD group and associated with widespread anatomo-functional patterns across non-inhibitory regions. DISCUSSION: These findings suggest that negation hinges on the integrity and interaction of spatiotemporal inhibitory mechanisms. Moreover, our results reveal potential neurocognitive markers of bvFTD, opening a new agenda at the crossing of cognitive neuroscience and behavioral neurology.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Humanos , Demencia Frontotemporal/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Inhibición Psicológica , Pruebas Neuropsicológicas , Imagen por Resonancia Magnética
12.
Cereb Cortex ; 32(16): 3377-3391, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34875690

RESUMEN

Neurodegeneration has multiscalar impacts, including behavioral, neuroanatomical, and neurofunctional disruptions. Can disease-differential alterations be captured across such dimensions using naturalistic stimuli? To address this question, we assessed comprehension of four naturalistic stories, highlighting action, nonaction, social, and nonsocial events, in Parkinson's disease (PD) and behavioral variant frontotemporal dementia (bvFTD) relative to Alzheimer's disease patients and healthy controls. Text-specific correlates were evaluated via voxel-based morphometry, spatial (fMRI), and temporal (hd-EEG) functional connectivity. PD patients presented action-text deficits related to the volume of action-observation regions, connectivity across motor-related and multimodal-semantic hubs, and frontal hd-EEG hypoconnectivity. BvFTD patients exhibited social-text deficits, associated with atrophy and spatial connectivity patterns along social-network hubs, alongside right frontotemporal hd-EEG hypoconnectivity. Alzheimer's disease patients showed impairments in all stories, widespread atrophy and spatial connectivity patterns, and heightened occipitotemporal hd-EEG connectivity. Our framework revealed disease-specific signatures across behavioral, neuroanatomical, and neurofunctional dimensions, highlighting the sensitivity and specificity of a single naturalistic task. This investigation opens a translational agenda combining ecological approaches and multimodal cognitive neuroscience for the study of neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/patología , Atrofia/patología , Biomarcadores , Encéfalo , Demencia Frontotemporal/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Enfermedades Neurodegenerativas/diagnóstico por imagen , Pruebas Neuropsicológicas
13.
J Neurosci ; 41(19): 4276-4292, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33827935

RESUMEN

Recent frameworks in cognitive neuroscience and behavioral neurology underscore interoceptive priors as core modulators of negative emotions. However, the field lacks experimental designs manipulating the priming of emotions via interoception and exploring their multimodal signatures in neurodegenerative models. Here, we designed a novel task that involves interoceptive and control-exteroceptive priming conditions followed by post-interoception and post-exteroception facial emotion recognition (FER). We recruited 114 participants, including healthy controls (HCs) as well as patients with behavioral variant frontotemporal dementia (bvFTD), Parkinson's disease (PD), and Alzheimer's disease (AD). We measured online EEG modulations of the heart-evoked potential (HEP), and associations with both brain structural and resting-state functional connectivity patterns. Behaviorally, post-interoception negative FER was enhanced in HCs but selectively disrupted in bvFTD and PD, with AD presenting generalized disruptions across emotion types. Only bvFTD presented impaired interoceptive accuracy. Increased HEP modulations during post-interoception negative FER was observed in HCs and AD, but not in bvFTD or PD patients. Across all groups, post-interoception negative FER correlated with the volume of the insula and the ACC. Also, negative FER was associated with functional connectivity along the (a) salience network in the post-interoception condition, and along the (b) executive network in the post-exteroception condition. These patterns were selectively disrupted in bvFTD (a) and PD (b), respectively. Our approach underscores the multidimensional impact of interoception on emotion, while revealing a specific pathophysiological marker of bvFTD. These findings inform a promising theoretical and clinical agenda in the fields of nteroception, emotion, allostasis, and neurodegeneration.SIGNIFICANCE STATEMENT We examined whether and how emotions are primed by interoceptive states combining multimodal measures in healthy controls and neurodegenerative models. In controls, negative emotion recognition and ongoing HEP modulations were increased after interoception. These patterns were selectively disrupted in patients with atrophy across key interoceptive-emotional regions (e.g., the insula and the cingulate in frontotemporal dementia, frontostriatal networks in Parkinson's disease), whereas persons with Alzheimer's disease presented generalized emotional processing abnormalities with preserved interoceptive mechanisms. The integration of both domains was associated with the volume and connectivity (salience network) of canonical interoceptive-emotional hubs, critically involving the insula and the anterior cingulate. Our study reveals multimodal markers of interoceptive-emotional priming, laying the groundwork for new agendas in cognitive neuroscience and behavioral neurology.


Asunto(s)
Emociones/fisiología , Reconocimiento Facial , Interocepción/fisiología , Degeneración Nerviosa/fisiopatología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/psicología , Mapeo Encefálico , Electroencefalografía , Potenciales Evocados/fisiología , Femenino , Demencia Frontotemporal/fisiopatología , Demencia Frontotemporal/psicología , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas/fisiología , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/psicología , Desempeño Psicomotor/fisiología
14.
Neurobiol Dis ; 175: 105918, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36375407

RESUMEN

Brain functional networks have been traditionally studied considering only interactions between pairs of regions, neglecting the richer information encoded in higher orders of interactions. In consequence, most of the connectivity studies in neurodegeneration and dementia use standard pairwise metrics. Here, we developed a genuine high-order functional connectivity (HOFC) approach that captures interactions between 3 or more regions across spatiotemporal scales, delivering a more biologically plausible characterization of the pathophysiology of neurodegeneration. We applied HOFC to multimodal (electroencephalography [EEG], and functional magnetic resonance imaging [fMRI]) data from patients diagnosed with behavioral variant of frontotemporal dementia (bvFTD), Alzheimer's disease (AD), and healthy controls. HOFC revealed large effect sizes, which, in comparison to standard pairwise metrics, provided a more accurate and parsimonious characterization of neurodegeneration. The multimodal characterization of neurodegeneration revealed hypo and hyperconnectivity on medium to large-scale brain networks, with a larger contribution of the former. Regions as the amygdala, the insula, and frontal gyrus were associated with both effects, suggesting potential compensatory processes in hub regions. fMRI revealed hypoconnectivity in AD between regions of the default mode, salience, visual, and auditory networks, while in bvFTD between regions of the default mode, salience, and somatomotor networks. EEG revealed hypoconnectivity in the γ band between frontal, limbic, and sensory regions in AD, and in the δ band between frontal, temporal, parietal and posterior areas in bvFTD, suggesting additional pathophysiological processes that fMRI alone can not capture. Classification accuracy was comparable with standard biomarkers and robust against confounders such as sample size, age, education, and motor artifacts (from fMRI and EEG). We conclude that high-order interactions provide a detailed, EEG- and fMRI compatible, biologically plausible, and psychopathological-specific characterization of different neurodegenerative conditions.


Asunto(s)
Enfermedad de Alzheimer , Demencia Frontotemporal , Humanos , Encéfalo/patología , Demencia Frontotemporal/patología , Enfermedad de Alzheimer/patología , Imagen por Resonancia Magnética , Mapeo Encefálico
15.
Neuroimage ; 212: 116677, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32101777

RESUMEN

Interoception (the sensing of inner-body signals) is a multi-faceted construct with major relevance for basic and clinical neuroscience research. However, the neurocognitive signatures of this domain (cutting across behavioral, electrophysiological, and fMRI connectivity levels) are rarely reported in convergent or systematic fashion. Additionally, various controversies in the field might reflect the caveats of standard interoceptive accuracy (IA) indexes, mainly based on heartbeat detection (HBD) tasks. Here we profit from a novel IA index (md) to provide a convergent multidimensional and multi-feature approach to cardiac interoception. We found that outcomes from our IA-md index are associated with -and predicted by- canonical markers of interoception, including the hd-EEG-derived heart-evoked potential (HEP), fMRI functional connectivity within interoceptive hubs (insular, somatosensory, and frontal networks), and socio-emotional skills. Importantly, these associations proved more robust than those involving current IA indexes. Furthermore, this pattern of results persisted when taking into consideration confounding variables (gender, age, years of education, and executive functioning). This work has relevant theoretical and clinical implications concerning the characterization of cardiac interoception and its assessment in heterogeneous samples, such as those composed of neuropsychiatric patients.


Asunto(s)
Encéfalo/fisiología , Potenciales Evocados/fisiología , Frecuencia Cardíaca , Interocepción/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Concienciación/fisiología , Electroencefalografía , Femenino , Corazón , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto Joven
16.
Psychosom Med ; 82(9): 850-861, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33003072

RESUMEN

OBJECTIVE: Neurological nosology, based on categorical systems, has largely ignored dimensional aspects of neurocognitive impairments. Transdiagnostic dimensional approaches of interoception (the sensing of visceral signals) may improve the descriptions of cross-pathological symptoms at behavioral, electrophysiological, and anatomical levels. Alterations of cardiac interoception (encompassing multidimensional variables such as accuracy, learning, sensibility, and awareness) and its neural correlates (electrophysiological markers, imaging-based anatomical and functional connectivity) have been proposed as critical across disparate neurological disorders. However, no study has examined the specific impact of neural (relative to autonomic) disturbances of cardiac interoception or their differential manifestations across neurological conditions. METHODS: Here, we used a computational approach to classify and evaluate which markers of cardiac interoception (behavioral, metacognitive, electrophysiological, volumetric, or functional) offer the best discrimination between neurological conditions and cardiac (hypertensive) disease (model 1), and among neurological conditions (Alzheimer's disease, frontotemporal dementia, multiple sclerosis, and brain stroke; model 2). In total, the study comprised 52 neurological patients (mean [standard deviation] age = 55.1 [17.3] years; 37 women), 25 cardiac patients (age = 66.2 [9.1] years; 13 women), and 72 healthy controls (age = 52.65 [17.1] years; 50 women). RESULTS: Cardiac interoceptive outcomes successfully classified between neurological and cardiac conditions (model 1: >80% accuracy) but not among neurological conditions (model 2: 53% accuracy). Behavioral cardiac interoceptive alterations, although present in all conditions, were powerful in differentiating between neurological and cardiac diseases. However, among neurological conditions, cardiac interoceptive deficits presented more undifferentiated and unspecific disturbances across dimensions. CONCLUSIONS: Our result suggests a diffuse pattern of interoceptive alterations across neurological conditions, highlighting their potential role as dimensional, transdiagnostic markers.


Asunto(s)
Interocepción , Metacognición , Adolescente , Anciano , Concienciación , Niño , Femenino , Corazón , Frecuencia Cardíaca , Humanos , Aprendizaje , Persona de Mediana Edad
17.
J Neurol Neurosurg Psychiatry ; 89(1): 112-116, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28765320

RESUMEN

Schadenfreude-pleasure at others' misfortunes-is a multidetermined social emotion which involves reward processing, mentalising and perspective-taking abilities. Patients with Huntington's disease (HD) exhibit reductions of this experience, suggesting a role of striatal degeneration in such impairment. However, no study has directly assessed the relationship between regional brain atrophy in HD and reduced schadenfreude. Here, we assessed whether grey matter (GM) atrophy in patients with HD correlates with ratings of schadenfreude. First, we compared the performance of 20 patients with HD and 23 controls on an experimental task designed to trigger schadenfreude and envy (another social emotion acting as a control condition). Second, we compared GM volume between groups. Third, we examined brain regions where atrophy might be associated with specific impairments in the patients. While both groups showed similar ratings of envy, patients with HD reported lower schadenfreude. The latter pattern was related to atrophy in regions of the reward system (ventral striatum) and the mentalising network (precuneus and superior parietal lobule). Our results shed light on the intertwining of reward and socioemotional processes in schadenfreude, while offering novel evidence about their neural correlates.


Asunto(s)
Encéfalo/patología , Emociones/fisiología , Empatía , Enfermedad de Huntington/patología , Conducta Social , Adulto , Atrofia/patología , Femenino , Sustancia Gris , Humanos , Enfermedad de Huntington/psicología , Masculino , Recompensa , Estriado Ventral/fisiopatología
18.
Nat Aging ; 4(8): 1153-1165, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38886210

RESUMEN

Models of healthy aging are typically based on the United States and Europe and may not apply to diverse and heterogeneous populations. In this study, our objectives were to conduct a meta-analysis to assess risk factors of cognition and functional ability across aging populations in Latin America and a scoping review focusing on methodological procedures. Our study design included randomized controlled trials and cohort, case-control and cross-sectional studies using multiple databases, including MEDLINE, the Virtual Health Library and Web of Science. From an initial pool of 455 studies, our meta-analysis included 38 final studies (28 assessing cognition and 10 assessing functional ability, n = 146,000 participants). Our results revealed significant but heterogeneous effects for cognition (odds ratio (OR) = 1.20, P = 0.03, confidence interval (CI) = (1.0127, 1.42); heterogeneity: I2 = 92.1%, CI = (89.8%, 94%)) and functional ability (OR = 1.20, P = 0.01, CI = (1.04, 1.39); I2 = 93.1%, CI = (89.3%, 95.5%)). Specific risk factors had limited effects, especially on functional ability, with moderate impacts for demographics and mental health and marginal effects for health status and social determinants of health. Methodological issues, such as outliers, inter-country differences and publication bias, influenced the results. Overall, we highlight the specific profile of risk factors associated with healthy aging in Latin America. The heterogeneity in results and methodological approaches in studying healthy aging call for greater harmonization and further regional research to understand healthy aging in Latin America.


Asunto(s)
Cognición , Envejecimiento Saludable , Humanos , América Latina/epidemiología , Factores de Riesgo , Cognición/fisiología , Anciano , Masculino , Femenino
19.
NPJ Parkinsons Dis ; 10(1): 15, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195756

RESUMEN

Cognitive studies on Parkinson's disease (PD) reveal abnormal semantic processing. Most research, however, fails to indicate which conceptual properties are most affected and capture patients' neurocognitive profiles. Here, we asked persons with PD, healthy controls, and individuals with behavioral variant frontotemporal dementia (bvFTD, as a disease control group) to read concepts (e.g., 'sun') and list their features (e.g., hot). Responses were analyzed in terms of ten word properties (including concreteness, imageability, and semantic variability), used for group-level comparisons, subject-level classification, and brain-behavior correlations. PD (but not bvFTD) patients produced more concrete and imageable words than controls, both patterns being associated with overall cognitive status. PD and bvFTD patients showed reduced semantic variability, an anomaly which predicted semantic inhibition outcomes. Word-property patterns robustly classified PD (but not bvFTD) patients and correlated with disease-specific hypoconnectivity along the sensorimotor and salience networks. Fine-grained semantic assessments, then, can reveal distinct neurocognitive signatures of PD.

20.
Clin Transl Med ; 14(10): e70032, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39360669

RESUMEN

BACKGROUND: Structural income inequality - the uneven income distribution across regions or countries - could affect brain structure and function, beyond individual differences. However, the impact of structural income inequality on the brain dynamics and the roles of demographics and cognition in these associations remains unexplored. METHODS: Here, we assessed the impact of structural income inequality, as measured by the Gini coefficient on multiple EEG metrics, while considering the subject-level effects of demographic (age, sex, education) and cognitive factors. Resting-state EEG signals were collected from a diverse sample (countries = 10; healthy individuals = 1394 from Argentina, Brazil, Colombia, Chile, Cuba, Greece, Ireland, Italy, Turkey and United Kingdom). Complexity (fractal dimension, permutation entropy, Wiener entropy, spectral structure variability), power spectral and aperiodic components (1/f slope, knee, offset), as well as graph-theoretic measures were analysed. FINDINGS: Despite variability in samples, data collection methods, and EEG acquisition parameters, structural inequality systematically predicted electrophysiological brain dynamics, proving to be a more crucial determinant of brain dynamics than individual-level factors. Complexity and aperiodic activity metrics captured better the effects of structural inequality on brain function. Following inequality, age and cognition emerged as the most influential predictors. The overall results provided convergent multimodal metrics of biologic embedding of structural income inequality characterised by less complex signals, increased random asynchronous neural activity, and reduced alpha and beta power, particularly over temporoposterior regions. CONCLUSION: These findings might challenge conventional neuroscience approaches that tend to overemphasise the influence of individual-level factors, while neglecting structural factors. Results pave the way for neuroscience-informed public policies aimed at tackling structural inequalities in diverse populations.


Asunto(s)
Encéfalo , Electroencefalografía , Humanos , Masculino , Femenino , Encéfalo/fisiología , Adulto , Electroencefalografía/métodos , Electroencefalografía/estadística & datos numéricos , Persona de Mediana Edad , Factores Socioeconómicos , Adulto Joven , Cognición/fisiología , Renta/estadística & datos numéricos , Anciano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA