Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Evol ; 40(2)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36703226

RESUMEN

Single nucleotide polymorphisms are the most common type of genetic variation, but how these variants contribute to the adaptation of complex phenotypes is largely unknown. Experimental evolution and genome-wide association studies have demonstrated that variation in the PPARγ-homolog Eip75B has associated with longevity and life-history differences in the fruit fly Drosophila melanogaster. Using RNAi knockdown, we first demonstrate that reduced expression of Eip75B in adult flies affects lifespan, egg-laying rate, and egg volume. We then tested the effects of a naturally occurring SNP within a cis-regulatory domain of Eip75B by applying two complementary approaches: a Mendelian randomization approach using lines of the Drosophila Genetic Reference Panel, and allelic replacement using precise CRISPR/Cas9-induced genome editing. Our experiments reveal that this natural polymorphism has a significant pleiotropic effect on fecundity and egg-to-adult viability, but not on longevity or other life-history traits. Our results provide a rare functional validation at the nucleotide level and identify a natural allelic variant affecting fitness and life-history adaptation.


Asunto(s)
Proteínas de Unión al ADN , Proteínas de Drosophila , Drosophila melanogaster , Animales , Proteínas de Unión al ADN/genética , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fertilidad/genética , Estudio de Asociación del Genoma Completo , Longevidad/genética , Nucleótidos/metabolismo , Polimorfismo de Nucleótido Simple , PPAR gamma/genética , PPAR gamma/metabolismo , Factores de Transcripción/metabolismo
2.
Mol Biol Evol ; 40(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37220650

RESUMEN

Since the pioneering work of Dobzhansky in the 1930s and 1940s, many chromosomal inversions have been identified, but how they contribute to adaptation remains poorly understood. In Drosophila melanogaster, the widespread inversion polymorphism In(3R)Payne underpins latitudinal clines in fitness traits on multiple continents. Here, we use single-individual whole-genome sequencing, transcriptomics, and published sequencing data to study the population genomics of this inversion on four continents: in its ancestral African range and in derived populations in Europe, North America, and Australia. Our results confirm that this inversion originated in sub-Saharan Africa and subsequently became cosmopolitan; we observe marked monophyletic divergence of inverted and noninverted karyotypes, with some substructure among inverted chromosomes between continents. Despite divergent evolution of this inversion since its out-of-Africa migration, derived non-African populations exhibit similar patterns of long-range linkage disequilibrium between the inversion breakpoints and major peaks of divergence in its center, consistent with balancing selection and suggesting that the inversion harbors alleles that are maintained by selection on several continents. Using RNA-sequencing, we identify overlap between inversion-linked single-nucleotide polymorphisms and loci that are differentially expressed between inverted and noninverted chromosomes. Expression levels are higher for inverted chromosomes at low temperature, suggesting loss of buffering or compensatory plasticity and consistent with higher inversion frequency in warm climates. Our results suggest that this ancestrally tropical balanced polymorphism spread around the world and became latitudinally assorted along similar but independent climatic gradients, always being frequent in subtropical/tropical areas but rare or absent in temperate climates.


Asunto(s)
Inversión Cromosómica , Drosophila melanogaster , Animales , Drosophila melanogaster/genética , Adaptación Fisiológica/genética , Polimorfismo de Nucleótido Simple , América del Norte
3.
Mol Ecol ; : e17382, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856653

RESUMEN

RNA sequencing (RNAseq) methodology has experienced a burst of technological developments in the last decade, which has opened up opportunities for studying the mechanisms of adaptation to environmental factors at both the organismal and cellular level. Selecting the most suitable experimental approach for specific research questions and model systems can, however, be a challenge and researchers in ecology and evolution are commonly faced with the choice of whether to study gene expression variation in whole bodies, specific tissues, and/or single cells. A wide range of sometimes polarised opinions exists over which approach is best. Here, we highlight the advantages and disadvantages of each of these approaches to provide a guide to help researchers make informed decisions and maximise the power of their study. Using illustrative examples of various ecological and evolutionary research questions, we guide the readers through the different RNAseq approaches and help them identify the most suitable design for their own projects.

4.
BMC Genomics ; 24(1): 244, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147612

RESUMEN

BACKGROUND: In many organisms increased reproductive effort is associated with a shortened life span. This trade-off is reflected in conserved molecular pathways that link nutrient-sensing with fecundity and longevity. Social insect queens apparently defy the fecundity / longevity trade-off as they are both, extremely long-lived and highly fecund. Here, we have examined the effects of a protein-enriched diet on these life-history traits and on tissue-specific gene expression in a termite species of low social complexity. RESULTS: On a colony level, we did not observe reduced lifespan and increased fecundity, effects typically seen in solitary model organisms, after protein enrichment. Instead, on the individual level mortality was reduced in queens that consumed more of the protein-enriched diet - and partially also in workers - while fecundity seemed unaffected. Our transcriptome analyses supported our life-history results. Consistent with life span extension, the expression of IIS (insulin/insulin-like growth factor 1 signalling) components was reduced in fat bodies after protein enrichment. Interestingly, however, genes involved in reproductive physiology (e.g., vitellogenin) were largely unaffected in fat body and head transcriptomes. CONCLUSION: These results suggest that IIS is decoupled from downstream fecundity-associated pathways, which can contribute to the remoulding of the fecundity/longevity trade-off in termites as compared to solitary insects.


Asunto(s)
Isópteros , Longevidad , Animales , Longevidad/fisiología , Fertilidad , Reproducción/fisiología , Insectos , Isópteros/genética , Dieta
5.
J Evol Biol ; 36(12): 1761-1782, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37942504

RESUMEN

Inversions are structural mutations that reverse the sequence of a chromosome segment and reduce the effective rate of recombination in the heterozygous state. They play a major role in adaptation, as well as in other evolutionary processes such as speciation. Although inversions have been studied since the 1920s, they remain difficult to investigate because the reduced recombination conferred by them strengthens the effects of drift and hitchhiking, which in turn can obscure signatures of selection. Nonetheless, numerous inversions have been found to be under selection. Given recent advances in population genetic theory and empirical study, here we review how different mechanisms of selection affect the evolution of inversions. A key difference between inversions and other mutations, such as single nucleotide variants, is that the fitness of an inversion may be affected by a larger number of frequently interacting processes. This considerably complicates the analysis of the causes underlying the evolution of inversions. We discuss the extent to which these mechanisms can be disentangled, and by which approach.


Asunto(s)
Inversión Cromosómica , Cromosomas , Humanos , Heterocigoto , Evolución Molecular
6.
Annu Rev Entomol ; 67: 83-103, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34590891

RESUMEN

An enormous amount of work has been done on aging in Drosophila melanogaster, a classical genetic and molecular model system, but also in numerous other insects. However, these two extensive bodies of work remain poorly integrated to date. Studies in Drosophila often explore genetic, developmental, physiological, and nutrition-related aspects of aging in the lab, while studies in other insects often explore ecological, social, and somatic aspects of aging in both lab and natural populations. Alongside exciting genomic and molecular research advances in aging in Drosophila, many new studies have also been published on aging in various other insects, including studies on aging in natural populations of diverse species. However, no broad synthesis of these largely separate bodies of work has been attempted. In this review, we endeavor to synthesize these two semi-independent literatures to facilitate collaboration and foster the exchange of ideas and research tools. While lab studies of Drosophila have illuminated many fundamental aspects of senescence, the stunning diversity of aging patterns among insects, especially in the context of their rich ecology, remains vastlyunderstudied. Coupled with field studies and novel, more easily applicable molecular methods, this represents a major opportunity for deepening our understanding of the biology of aging in insects and beyond.


Asunto(s)
Envejecimiento , Drosophila melanogaster , Insectos , Animales , Drosophila melanogaster/fisiología , Insectos/fisiología
7.
Proc Biol Sci ; 289(1986): 20221989, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36350205

RESUMEN

'Evolve and resequence' (E&R) studies in Drosophila melanogaster have identified many candidate loci underlying the evolution of ageing and life history, but experiments that validate the effects of such candidates remain rare. In a recent E&R study we have identified several alleles of the LAMMER kinase Darkener of apricot (Doa) as candidates for evolutionary changes in lifespan and fecundity. Here, we use two complementary approaches to confirm a functional role of Doa in life-history evolution. First, we used transgenic RNAi to study the effects of Doa at the whole-gene level. Ubiquitous silencing of expression in adult flies reduced both lifespan and fecundity, indicating pleiotropic effects. Second, to characterize segregating variation at Doa, we examined four candidate single nucleotide polymorphisms (SNPs; Doa-1, -2, -3, -4) using a genetic association approach. Three candidate SNPs had effects that were qualitatively consistent with expectations based on our E&R study: Doa-2 pleiotropically affected both lifespan and late-life fecundity; Doa-1 affected lifespan (but not fecundity); and Doa-4 affected late-life fecundity (but not lifespan). Finally, the last candidate allele (Doa-3) also affected lifespan, but in the opposite direction from predicted.


Asunto(s)
Proteínas de Drosophila , Prunus armeniaca , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila/genética , Alelos , Prunus armeniaca/genética , Prunus armeniaca/metabolismo , Longevidad , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
8.
Mol Biol Evol ; 37(9): 2661-2678, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32413142

RESUMEN

Genetic variation is the fuel of evolution, with standing genetic variation especially important for short-term evolution and local adaptation. To date, studies of spatiotemporal patterns of genetic variation in natural populations have been challenging, as comprehensive sampling is logistically difficult, and sequencing of entire populations costly. Here, we address these issues using a collaborative approach, sequencing 48 pooled population samples from 32 locations, and perform the first continent-wide genomic analysis of genetic variation in European Drosophila melanogaster. Our analyses uncover longitudinal population structure, provide evidence for continent-wide selective sweeps, identify candidate genes for local climate adaptation, and document clines in chromosomal inversion and transposable element frequencies. We also characterize variation among populations in the composition of the fly microbiome, and identify five new DNA viruses in our samples.


Asunto(s)
Drosophila melanogaster/genética , Genoma de los Insectos , Variación Estructural del Genoma , Microbiota , Selección Genética , Aclimatación/genética , Altitud , Animales , Virus ADN , Drosophila melanogaster/virología , Europa (Continente) , Genoma Mitocondrial , Haplotipos , Virus de Insectos , Masculino , Filogeografía , Polimorfismo de Nucleótido Simple
9.
Mol Ecol ; 30(16): 3896-3897, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34218481

RESUMEN

Several recent publications have stated that epistatic fitness interactions cause the fixation of inversions that suppress recombination among the loci involved. Under this type of selection, however, the suppression of recombination in an inversion heterozygote can create a form of heterozygote advantage, which prevents the inversion from becoming fixed by selection. This process has been explicitly modelled by previous workers.


Asunto(s)
Epistasis Genética , Recombinación Genética , Inversión Cromosómica/genética , Heterocigoto , Humanos , Desequilibrio de Ligamiento , Modelos Genéticos , Selección Genética
10.
Mol Ecol ; 30(12): 2817-2830, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33914989

RESUMEN

The insulin/insulin-like growth factor signalling pathway has been hypothesized as a major determinant of life-history profiles that vary adaptively in natural populations. In Drosophila melanogaster, multiple components of this pathway vary predictably with latitude; this includes foxo, a conserved gene that regulates insulin signalling and has pleiotropic effects on a variety of fitness-associated traits. We hypothesized that allelic variation at foxo contributes to genetic variance for size-related traits that vary adaptively with latitude. We first examined patterns of variation among natural populations along a latitudinal transect in the eastern United States and show that thorax length, wing area, wing loading, and starvation tolerance exhibit significant latitudinal clines for both males and females but that development time does not vary predictably with latitude. We then generated recombinant outbred populations and show that naturally occurring allelic variation at foxo, which exhibits stronger clinality than expected, is associated with the same traits that vary with latitude in the natural populations. Our results suggest that allelic variation at foxo contributes to adaptive patterns of life-history variation in natural populations of this genetic model.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Aclimatación , Adaptación Fisiológica/genética , Alelos , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Factores de Transcripción Forkhead/genética , Variación Genética , Masculino , Polimorfismo Genético , Estados Unidos
11.
Ecol Lett ; 22(2): 342-353, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30536594

RESUMEN

The current extinction and climate change crises pressure us to predict population dynamics with ever-greater accuracy. Although predictions rest on the well-advanced theory of age-structured populations, two key issues remain poorly explored. Specifically, how the age-dependency in demographic rates and the year-to-year interactions between survival and fecundity affect stochastic population growth rates. We use inference, simulations and mathematical derivations to explore how environmental perturbations determine population growth rates for populations with different age-specific demographic rates and when ages are reduced to stages. We find that stage- vs. age-based models can produce markedly divergent stochastic population growth rates. The differences are most pronounced when there are survival-fecundity-trade-offs, which reduce the variance in the population growth rate. Finally, the expected value and variance of the stochastic growth rates of populations with different age-specific demographic rates can diverge to the extent that, while some populations may thrive, others will inevitably go extinct.


Asunto(s)
Aves , Cambio Climático , Extinción Biológica , Animales , Biodiversidad , Demografía , Femenino , Masculino , Modelos Biológicos , Dinámica Poblacional , Procesos Estocásticos
12.
Mol Ecol ; 28(6): 1263-1282, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30230076

RESUMEN

Chromosomal inversions, structural mutations that reverse a segment of a chromosome, cause suppression of recombination in the heterozygous state. Several studies have shown that inversion polymorphisms can form clines or fluctuate predictably in frequency over seasonal time spans. These observations prompted the hypothesis that chromosomal rearrangements might be subject to spatially and/or temporally varying selection. Here, we review what has been learned about the adaptive significance of inversion polymorphisms in the vinegar fly Drosophila melanogaster, the species in which they were first discovered by Sturtevant in 1917. A large body of work provides compelling evidence that several inversions in this system are adaptive; however, the precise selective mechanisms that maintain them polymorphic in natural populations remain poorly understood. Recent advances in population genomics, modelling and functional genetics promise to greatly improve our understanding of this long-standing and fundamental problem in the near future.


Asunto(s)
Adaptación Biológica/genética , Evolución Biológica , Inversión Cromosómica/genética , Drosophila melanogaster/genética , Animales , Drosophila melanogaster/fisiología , Metagenómica
13.
J Evol Biol ; 32(5): 425-437, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30735275

RESUMEN

Experimental evolution (EE) is a powerful tool for addressing how environmental factors influence life-history evolution. While in nature different selection pressures experienced across the lifespan shape life histories, EE studies typically apply selection pressures one at a time. Here, we assess the consequences of adaptation to three different developmental diets in combination with classical selection for early or late reproduction in the fruit fly Drosophila melanogaster. We find that the response to each selection pressure is similar to that observed when they are applied independently, but the overall magnitude of the response depends on the selection regime experienced in the other life stage. For example, adaptation to increased age at reproduction increased lifespan across all diets; however, the extent of the increase was dependent on the dietary selection regime. Similarly, adaptation to a lower calorie developmental diet led to faster development and decreased adult weight, but the magnitude of the response was dependent on the age-at-reproduction selection regime. Given that multiple selection pressures are prevalent in nature, our findings suggest that trade-offs should be considered not only among traits within an organism, but also among adaptive responses to different-sometimes conflicting-selection pressures, including across life stages.


Asunto(s)
Adaptación Fisiológica/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Maduración Sexual/fisiología , Animales , Dieta , Femenino , Estadios del Ciclo de Vida , Masculino , Maduración Sexual/genética
14.
BMC Biol ; 16(1): 93, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30124168

RESUMEN

Between the 1930s and 50s, evolutionary biologists developed a successful theory of why organisms age, firmly rooted in population genetic principles. By the 1980s the evolution of aging had a secure experimental basis. Since the force of selection declines with age, aging evolves due to mutation accumulation or a benefit to fitness early in life. Here we review major insights and challenges that have emerged over the last 35 years: selection does not always necessarily decline with age; higher extrinsic (i.e., environmentally caused) mortality does not always accelerate aging; conserved pathways control aging rate; senescence patterns are more diverse than previously thought; aging is not universal; trade-offs involving lifespan can be 'broken'; aging might be 'druggable'; and human life expectancy continues to rise but compressing late-life morbidity remains a pressing challenge.


Asunto(s)
Envejecimiento/fisiología , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Ambiente , Humanos , Longevidad/genética , Longevidad/fisiología , Mortalidad , Selección Genética/fisiología , Transducción de Señal/fisiología
15.
J Evol Biol ; 31(9): 1354-1364, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29904977

RESUMEN

Chromosomal inversions often contribute to local adaptation across latitudinal clines, but the underlying selective mechanisms remain poorly understood. We and others have previously shown that a clinal inversion polymorphism in Drosophila melanogaster, In(3R)Payne, underpins body size clines along the North American and Australian east coasts. Here, we ask whether this polymorphism also contributes to clinal variation in other fitness-related traits, namely survival traits (lifespan, survival upon starvation and survival upon cold shock). We generated homokaryon lines, either carrying the inverted or standard chromosomal arrangement, isolated from populations approximating the endpoints of the North American cline (Florida, Maine) and phenotyped the flies at two growth temperatures (18 °C, 25 °C). Across both temperatures, high-latitude flies from Maine lived longer and were more stress resistant than low-latitude flies from Florida, as previously observed. Interestingly, we find that this latitudinal pattern is partly explained by the clinal distribution of the In(3R)P polymorphism, which is at ~ 50% frequency in Florida but absent in Maine: inverted karyotypes tended to be shorter-lived and less stress resistant than uninverted karyotypes. We also detected an interaction between karyotype and temperature on survival traits. As In(3R)P influences body size and multiple survival traits, it can be viewed as a 'supergene', a cluster of tightly linked loci affecting multiple complex phenotypes. We conjecture that the inversion cline is maintained by fitness trade-offs and balancing selection across geography; elucidating the mechanisms whereby this inversion affects alternative, locally adapted phenotypes across the cline is an important task for future work.


Asunto(s)
Adaptación Fisiológica/genética , Tamaño Corporal/genética , Inversión Cromosómica , Drosophila melanogaster/genética , Animales , Florida , Aptitud Genética , Cariotipo , Longevidad , Maine , Fenotipo , Polimorfismo Genético , Selección Genética , Temperatura
16.
Mol Biol Evol ; 33(5): 1317-36, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26796550

RESUMEN

Clines in chromosomal inversion polymorphisms-presumably driven by climatic gradients-are common but there is surprisingly little evidence for selection acting on them. Here we address this long-standing issue in Drosophila melanogaster by using diagnostic single nucleotide polymorphism (SNP) markers to estimate inversion frequencies from 28 whole-genome Pool-seq samples collected from 10 populations along the North American east coast. Inversions In(3L)P, In(3R)Mo, and In(3R)Payne showed clear latitudinal clines, and for In(2L)t, In(2R)NS, and In(3R)Payne the steepness of the clinal slopes changed between summer and fall. Consistent with an effect of seasonality on inversion frequencies, we detected small but stable seasonal fluctuations of In(2R)NS and In(3R)Payne in a temperate Pennsylvanian population over 4 years. In support of spatially varying selection, we observed that the cline in In(3R)Payne has remained stable for >40 years and that the frequencies of In(2L)t and In(3R)Payne are strongly correlated with climatic factors that vary latitudinally, independent of population structure. To test whether these patterns are adaptive, we compared the amount of genetic differentiation of inversions versus neutral SNPs and found that the clines in In(2L)t and In(3R)Payne are maintained nonneutrally and independent of admixture. We also identified numerous clinal inversion-associated SNPs, many of which exhibit parallel differentiation along the Australian cline and reside in genes known to affect fitness-related traits. Together, our results provide strong evidence that inversion clines are maintained by spatially-and perhaps also temporally-varying selection. We interpret our data in light of current hypotheses about how inversions are established and maintained.


Asunto(s)
Adaptación Biológica/genética , Inversión Cromosómica , Drosophila melanogaster/genética , Animales , Evolución Biológica , Evolución Molecular , Genética de Población/métodos , Desequilibrio de Ligamiento , Masculino , América del Norte , Polimorfismo de Nucleótido Simple
17.
EMBO J ; 32(11): 1626-38, 2013 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-23652443

RESUMEN

Throughout the animal kingdom, steroid hormones have been implicated in the defense against microbial infection, but how these systemic signals control immunity is unclear. Here, we show that the steroid hormone ecdysone controls the expression of the pattern recognition receptor PGRP-LC in Drosophila, thereby tightly regulating innate immune recognition and defense against bacterial infection. We identify a group of steroid-regulated transcription factors as well as two GATA transcription factors that act as repressors and activators of the immune response and are required for the proper hormonal control of PGRP-LC expression. Together, our results demonstrate that Drosophila use complex mechanisms to modulate innate immune responses, and identify a transcriptional hierarchy that integrates steroid signalling and immunity in animals.


Asunto(s)
Proteínas Portadoras/metabolismo , Drosophila/inmunología , Ecdisona/metabolismo , Regulación de la Expresión Génica , Transducción de Señal , Animales , Proteínas Portadoras/genética , Línea Celular , Drosophila/genética , Drosophila/microbiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Enterobacter cloacae/fisiología , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Inmunidad Innata , Estimación de Kaplan-Meier , Modelos Moleculares , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Pectobacterium carotovorum/fisiología , Interferencia de ARN , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Mol Ecol ; 25(5): 1023-6, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26919307

RESUMEN

Clines in phenotypes and genotype frequencies across environmental gradients are commonly taken as evidence for spatially varying selection. Classical examples include the latitudinal clines in various species of Drosophila, which often occur in parallel fashion on multiple continents. Today, genomewide analysis of such clinal systems provides a fantastic opportunity for unravelling the genetics of adaptation, yet major challenges remain. A well-known but often neglected problem is that demographic processes can also generate clinality, independent of or coincident with selection. A closely related issue is how to identify true genic targets of clinal selection. In this issue of Molecular Ecology, three studies illustrate these challenges and how they might be met. Bergland et al. report evidence suggesting that the well-known parallel latitudinal clines in North American and Australian D. melanogaster are confounded by admixture from Africa and Europe, highlighting the importance of distinguishing demographic from adaptive clines. In a companion study, Machado et al. provide the first genomic comparison of latitudinal differentiation in D. melanogaster and its sister species D. simulans. While D. simulans is less clinal than D. melanogaster, a significant fraction of clinal genes is shared between both species, suggesting the existence of convergent adaptation to clinaly varying selection pressures. Finally, by drawing on several independent sources of evidence, Bozicevic et al. identify a functional network of eight clinal genes that are likely involved in cold adaptation. Together, these studies remind us that clinality does not necessarily imply selection and that separating adaptive signal from demographic noise requires great effort and care.


Asunto(s)
Adaptación Fisiológica/genética , Drosophila melanogaster/genética , Evolución Molecular , Genética de Población , Animales
19.
Gerontology ; 62(4): 409-16, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26675034

RESUMEN

Research into ageing and its underlying molecular basis enables us to develop and implement targeted interventions to ameliorate or cure its consequences. However, the efficacy of interventions often differs widely between individuals, suggesting that populations should be stratified or even individualized. Large-scale cohort studies in humans, similar systematic studies in model organisms as well as detailed investigations into the biology of ageing can provide individual validated biomarkers and mechanisms, leading to recommendations for targeted interventions. Human cohort studies are already ongoing, and they can be supplemented by in silico simulations. Systematic studies in animal models are made possible by the use of inbred strains or genetic reference populations of mice. Combining the two, a comprehensive picture of the various determinants of ageing and 'health span' can be studied in detail, and an appreciation of the relevance of results from model organisms to humans is emerging. The interactions between genotype and environment, particularly the psychosocial environment, are poorly studied in both humans and model organisms, presenting serious challenges to any approach to a personalized medicine of ageing. To increase the success of preventive interventions, we argue that there is a pressing need for an individualized evaluation of interventions such as physical exercise, nutrition, nutraceuticals and calorie restriction mimetics as well as psychosocial and environmental factors, separately and in combination. The expected extension of the health span enables us to refocus health care spending on individual prevention, starting in late adulthood, and on the brief period of morbidity at very old age.


Asunto(s)
Envejecimiento , Envejecimiento Saludable , Medicina de Precisión/tendencias , Animales , Biología Computacional , Humanos , Longevidad , Ratones , Modelos Animales
20.
Mol Ecol ; 23(7): 1813-27, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24372777

RESUMEN

Sequencing of pools of individuals (Pool-Seq) represents a reliable and cost-effective approach for estimating genome-wide SNP and transposable element insertion frequencies. However, Pool-Seq does not provide direct information on haplotypes so that, for example, obtaining inversion frequencies has not been possible until now. Here, we have developed a new set of diagnostic marker SNPs for seven cosmopolitan inversions in Drosophila melanogaster that can be used to infer inversion frequencies from Pool-Seq data. We applied our novel marker set to Pool-Seq data from an experimental evolution study and from North American and Australian latitudinal clines. In the experimental evolution data, we find evidence that positive selection has driven the frequencies of In(3R)C and In(3R)Mo to increase over time. In the clinal data, we confirm the existence of frequency clines for In(2L)t, In(3L)P and In(3R)Payne in both North America and Australia and detect a previously unknown latitudinal cline for In(3R)Mo in North America. The inversion markers developed here provide a versatile and robust tool for characterizing inversion frequencies and their dynamics in Pool-Seq data from diverse D. melanogaster populations.


Asunto(s)
Inversión Cromosómica , Drosophila melanogaster/genética , Evolución Molecular , Variación Genética , Genética de Población , Animales , Australia , Marcadores Genéticos , Haplotipos , Cariotipificación , Desequilibrio de Ligamiento , América del Norte , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA