Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Ann Bot ; 104(6): 1017-43, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19789175

RESUMEN

BACKGROUND: Most tropical and subtropical plants are biotically pollinated, and insects are the major pollinators. A small but ecologically and economically important group of plants classified in 28 orders, 67 families and about 528 species of angiosperms are pollinated by nectar-feeding bats. From a phylogenetic perspective this is a derived pollination mode involving a relatively large and energetically expensive pollinator. Here its ecological and evolutionary consequences are explored. SCOPE AND CONCLUSIONS: This review summarizes adaptations in bats and plants that facilitate this interaction and discusses the evolution of bat pollination from a plant phylogenetic perspective. Two families of bats contain specialized flower visitors, one in the Old World and one in the New World. Adaptation to pollination by bats has evolved independently many times from a variety of ancestral conditions, including insect-, bird- and non-volant mammal-pollination. Bat pollination predominates in very few families but is relatively common in certain angiosperm subfamilies and tribes. We propose that flower-visiting bats provide two important benefits to plants: they deposit large amounts of pollen and a variety of pollen genotypes on plant stigmas and, compared with many other pollinators, they are long-distance pollen dispersers. Bat pollination tends to occur in plants that occur in low densities and in lineages producing large flowers. In highly fragmented tropical habitats, nectar bats play an important role in maintaining the genetic continuity of plant populations and thus have considerable conservation value.


Asunto(s)
Quirópteros/fisiología , Filogenia , Polinización/fisiología , Animales , Quirópteros/clasificación , Flores/fisiología , Geografía
2.
PLoS One ; 11(9): e0163492, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27684373

RESUMEN

Nectar-feeding bats show morphological, physiological, and behavioral adaptations for feeding on nectar. How they find and localize flowers is still poorly understood. While scent cues alone allow no precise localization of a floral target, the spatial properties of flower echoes are very precise and could play a major role, particularly at close range. The aim of this study is to understand the role of echolocation for classification and localization of flowers. We compared the approach behavior of Leptonycteris yerbabuenae to flowers of a columnar cactus, Pachycereus pringlei, to that to an acrylic hollow hemisphere that is acoustically conspicuous to bats, but has different acoustic properties and, contrary to the cactus flower, present no scent. For recording the flight and echolocation behaviour we used two infrared video cameras under stroboscopic illumination synchronized with ultrasound recordings. During search flights all individuals identified both targets as a possible food source and initiated an approach flight; however, they visited only the cactus flower. In experiments with the acrylic hemisphere bats aborted the approach at ca. 40-50 cm. In the last instant before the flower visit the bats emitted a long terminal group of 10-20 calls. This is the first report of this behaviour for a nectar-feeding bat. Our findings suggest that L. yerbabuenae use echolocation for classification and localization of cactus flowers and that the echo-acoustic characteristics of the flower guide the bats directly to the flower opening.

3.
Biol Rev Camb Philos Soc ; 90(4): 1263-78, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25599800

RESUMEN

Frugivorous fish play a prominent role in seed dispersal and reproductive dynamics of plant communities in riparian and floodplain habitats of tropical regions worldwide. In Neotropical wetlands, many plant species have fleshy fruits and synchronize their fruiting with the flood season, when fruit-eating fish forage in forest and savannahs for periods of up to 7 months. We conducted a comprehensive analysis to examine the evolutionary origin of fish-fruit interactions, describe fruit traits associated with seed dispersal and seed predation, and assess the influence of fish size on the effectiveness of seed dispersal by fish (ichthyochory). To date, 62 studies have documented 566 species of fruits and seeds from 82 plant families in the diets of 69 Neotropical fish species. Fish interactions with flowering plants are likely to be as old as 70 million years in the Neotropics, pre-dating most modern bird-fruit and mammal-fruit interactions, and contributing to long-distance seed dispersal and possibly the radiation of early angiosperms. Ichthyochory occurs across the angiosperm phylogeny, and is more frequent among advanced eudicots. Numerous fish species are capable of dispersing small seeds, but only a limited number of species can disperse large seeds. The size of dispersed seeds and the probability of seed dispersal both increase with fish size. Large-bodied species are the most effective seed dispersal agents and remain the primary target of fishing activities in the Neotropics. Thus, conservation efforts should focus on these species to ensure continuity of plant recruitment dynamics and maintenance of plant diversity in riparian and floodplain ecosystems.


Asunto(s)
Evolución Biológica , Conservación de los Recursos Naturales , Conducta Alimentaria , Peces/fisiología , Frutas/fisiología , Humedales , Animales
4.
Evolution ; 56(11): 2214-26, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12487352

RESUMEN

Distinguishing the historical effects of gene migration and vicariance on contemporary genetic structure is problematic without testable biogeographic hypotheses based on preexisting geological and environmental evidence. The availability of such hypotheses for North America's Sonoran Desert has contributed to our understanding of the effect of historical vicariance and dispersal events on the diversification of this region's vertebrate biota but have not yet been applied to its flora. In this paper we describe a detailed allozyme analysis of the population genetic structure and phylogeography of the Sonoran Desert columnar cactus, Lophocereus schottii (senita). Inferred phylogroup distributions reflect two historical vicariance events: (1) a middle Pliocene northward transgression of the Sea of Cortéz that is reflected in well-supported Baja California peninsular and continental phylogroups but not in current taxonomic treatments of the species; and (2) a late Pliocene transpeninsular seaway across southern Baja that is reflected in tentative support for peninsular and southern Cape Region phylogroups corresponding to taxonomic varieties L. schottii var. schottii and L. schottii var. australis, respectively. A middle Pleistocene midpeninsular seaway hypothesized to explain congruent phylogroup distributions in several vertebrate taxa is not reflected in L. s. var. schottii, nor is the distinction of a third variety, L. s. var. tenuis, from continental populations of L. s. var. schottii. Linear regression of pairwise estimates of interpopulation differentiation (M and F(ST)/[1 - F(ST)]) on interpopulation geographic distance revealed significant evidence of isolation by distance within peninsular and continental phylogroups but not between them, consistent with historical vicariance between but not within these regions. We also found significant evidence of isolation by distance between putative L. s. var. schottii and L. s. var. australis phylogroups, suggesting that reproductive isolation between peninsular and Cape Region forms is incomplete. Within peninsular, but not continental, phylogroups, northward range expansion from southern Pleistocene refugia is reflected in significant declines in genetic variation with increasing latitude and in an area phenogram in which populations are progressively nested from south (ancestral) to north (descendant) along the Baja peninsula. Although the geographic concordance of phylogenetic topologies suggests that ancient vicariance events, and not dispersal, have primarily influenced the biogeographic distributions of Baja's vertebrate biota, the phylogeographic structure of L. schottii suggests that Sonoran Desert plant species may exhibit genetic signatures of postglacial range expansion and gene flow as well as vicariance.


Asunto(s)
Evolución Biológica , Cactaceae/genética , Arizona , Cactaceae/química , Cactaceae/clasificación , Cactaceae/fisiología , Genética de Población , México , Filogenia , Proteínas de Plantas/análisis , Análisis de Regresión
5.
Oecologia ; 51(1): 42-46, 1981 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28310307

RESUMEN

This paper describes the nightly and seasonal production of ripe fruit by Piper amalago (Piperaceae), a patchily distributed, bat-dispersed forest shrub, at Parque Nacional Santa Rosa, Costa Rica. Phenological observations over several years indicate that individuals produce a low (usually 1-3) and variable number of ripe fruit each night for 3-4 wks in the early wet season (June and July). Observations of the disappearance rates of marked fruits and fruit manipulation experiments indicate that fruit removal probabilities are high (often nearly 1.0) and independent of nightly and seasonal ripe fruit crop size. Data from previous feeding and foraging studies of the bat Carollia perspicillata (Phyllostomidae) are used to estimate the mobility of P. amalago's seeds. Most seeds (>90%) are deposited ≧50 m from parent plants under night feeding roosts. Relatively few seeds move >300 m, and movements this long are more likely to occur early and late in the fruiting season when bats change feeding sites more frequently. Seed experiments indicate that P. amalago seedling establishment probabilities are higher in light gaps than under forest canopy. The dispersal quality (sensu McKey 1975) of P. amalago's chiropteran seed dispersers is directly proportional to the number of seeds they excrete in actual or incipient light gaps.

6.
Oecologia ; 53(1): 56-60, 1982 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28310603

RESUMEN

In this paper I compare several biogeographic patterns of West Indian resident land birds and bats, including species-area and trophic diversity-area relationships, the number of islands inhabited per species and levels of endemism, trophic structure as compared with tropical mainland areas, and the degree of faunal simlarity between islands of similar sizes but different locations. In most respects, the bat and bird patterns are strikingly similar. Groups of birds that are conspicuously missing from the Antilles because of the absence of appropriate resources also have missing chiropteran counterparts. Plant-visiting bats and birds are better-represented in terms of relative number of species and, in birds, in biomass, on the Lesser Antilles than on the mainland (e.g. Panama). Small Antillean islands tend to share more species of birds and bats than do larger islands. Stochastic (sensu Simberloff 1978), deterministic, and interactive (e.g. competitive and trophic interactions) factors appear to underly these biogeographic trends. No evidence exists to suggest that Caribbean bats and birds have negatively affected each other's diversity.

7.
Oecologia ; 133(4): 534-540, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28466169

RESUMEN

Specialization of a plant on a particular pollinator may not evolve if co-pollinators are effective and abundant. This is particularly evident if fruit set is resource limited and cannot be increased above the levels produced by the actions of co-pollinators. The pollinating seed-consuming interaction between senita cacti and senita moths in the Sonoran Desert presents a paradox because it exhibits many traits resembling those of the highly specialized yucca/yucca moth system, but also involves co-pollinators. For 6 years, we studied how contributions of nocturnal senita moths and diurnal co-pollinating bees to fruit set depended on resource and pollen limitation, time of flower closing, and the onset and phenology of flowering. Fruit set was typically resource limited. Fruit set of flowers exposed only to senita moths was not different from resource-limited fruit set of control flowers. When only co-pollinating bees were allowed to visit flowers, however, fruit set became pollen limited. Only in one year when fruit set was pollen limited were bees able to increase fruit set beyond the level resulting from senita moth pollination. High temperatures commonly induced flowers to close before sunrise so that diurnal bees were unable to visit flowers. This was particularly important from 1998 to 2000, when flowering did not begin until late in spring when temperatures were already high enough to induce flowers to close before sunrise. Bees were typically functionally redundant with senita moths; excluding bees from visiting flowers did not alter fruit set. Nevertheless, extreme specialization of floral traits to exclude co-pollinators has not evolved in senita, possibly because there are times when bees do increase fruit set. This can occur when senita moths are rare, fruit set is pollen limited, cool temperatures prevent flowers from closing before sunrise, and flowering begins early in spring.

8.
Oecologia ; 62(3): 344-350, 1984 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28310887

RESUMEN

We briefly review current methods for detecting nonrandom patterns in the temporal overlap of flowering and fruiting curves. We discuss the assumptions behind these methods and propose a new method of analysis using computer simulations to measure n-wise, rather than pairwise, temporal overlap. We quantify the extent to which observed n-wise overlap differs from minimum possible n-wise overlap and apply our method to several data sets to test the hypothesis that interspecific competition for animal visitors has produced flowering curves whose overlap is less than that expected by chance. Results of our analyses provide little support for this hypothesis but suggest alternate criteria by which the species may be selected.

9.
Oecologia ; 114(3): 368-375, 1998 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28307780

RESUMEN

We report a new obligate pollination mutualism involving the senita cactus, Lophocereus schottii (Cactaceae, Pachyceereae), and the senita moth, Upiga virescens (Pyralidae, Glaphyriinae) in the Sonoran Desert and discuss the evolution of specialized pollination mutualisms. L. schottii is a night-blooming, self-incompatible columnar cactus. Beginning at sunset, its flowers are visited by U. virescens females, which collect pollen on specialized abdominal scales, actively deposit pollen on flower stigmas, and oviposit a single egg on a flower petal. Larvae spend 6 days eating ovules before exiting the fruit and pupating in a cactus branch. Hand-pollination and pollinator exclusion experiments at our study site near Bahia Kino, Sonora, Mexico, revealed that fruit set in L. schottii is likely to be resource limited. About 50% of hand-outcrossed and open-pollinated senita flowers abort by day 6 after flower opening. Results of exclusion experiments indicated that senita moths accounted for 75% of open-pollinated fruit set in 1995 with two species of halictid bees accounting for the remaining fruit set. In 1996, flowers usually closed before sunrise, and senita moths accounted for at least 90% of open-pollinated fruit set. The net outcome of the senita/senita moth interaction is mutualistic, with senita larvae destroying about 30% of the seeds resulting from pollination by senita moths. Comparison of the senita system with the yucca/yucca moth mutualism reveals many similarities, including reduced nectar production, active pollination, and limited seed destruction. The independent evolution of many of the same features in the two systems suggests that a common pathway exists for the evolution of these highly specialized pollination mutualisms. Nocturnal flower opening, self-incompatible breeding systems, and resource-limited fruit production appear to be important during this evolution.

10.
Oecologia ; 121(3): 405-410, 1999 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28308330

RESUMEN

Interspecific interactions can vary within and among populations and geographic locations. This variation can subsequently influence the evolution and coevolution of species interactions. We investigated population and geographic variation in traits important to pollinating seed-consuming interactions between the senita cactus (Lophocereus schottii) and its obligate pollinating moth (Upiga virescens), both of which are geographically restricted to the Sonoran Desert. Female moths actively pollinate senita flowers and oviposit onto flowers. Their larvae consume developing seeds and fruit of flowers pollinated by females. Traits important to this interaction include fruit set from moth pollination, fruit survivorship, and costs of fruit consumption by larvae. We studied these traits for five populations at two widely separated geographic locations. On average, 37% of flowers set fruit, 22% of flowers produced mature fruit, and larvae consumed 25% of immature fruit pollinated by female senita moths. Senita cactus and senita moth interactions were strongly mutualistic in all populations that we studied. Although one population had statistically lower fruit set and fruit production than the other four, all five populations were qualitatively similar in fruit production, costs, and patterns of fruit survivorship. Hand-pollination experiments suggested that fruit set was resource-limited in all but this one population. Apparent pollen limitation in the one population explains the quantitative differences in fruit set and fruit survivorship among the populations. As predicted by theory and exemplified by the senita mutualism, specialized and/or obligate interactions vary little among populations and geographic locations.

11.
Oecologia ; 94(1): 72-75, 1993 May.
Artículo en Inglés | MEDLINE | ID: mdl-28313861

RESUMEN

Three species of nectar-feeding bats migrate from tropical and subtropical Mexico into the Sonoran and Chihuahuan deserts during the spring and summer months. We examined geographic and seasonal changes in the diet of one migrant species, Leptonycteris curasoae, using carbon stable isotope techniques to determine the relative importance of C3 and CAM (Cactaceae, Agavaceae) plants in its diet. We also examined the diet of a non-migratory nectar-feeding bat, Glossophaga soricina, from southern Mexico using the same techniques. We found that L. curasoae feeds extensively or exclusively on CAM plants during migration and in the northern part of its range and feeds mostly on C3 plants in southern Mexico. This bat is a year-round resident on Baja California where it is a CAM specialist. The non-migrant G. soricina feeds mostly on C3 plants year-round. Phenological data suggest that certain species of columnar cacti and at least one group of paniculate Agaves on the Mexican mainland provide a spatio-temporally predictable nectar corridor along which nectarivorous bats may migrate in the spring and fall, respectively. Different flowering schedules of Agaves in Baja California appear to promote year-round dietary specialization and perhaps non-migratory behavior in nectar-feeding bats living there.

12.
PLoS One ; 6(3): e17704, 2011 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-21445291

RESUMEN

Observed patterns of genetic structure result from the interactions of demographic, physical, and historical influences on gene flow. The particular strength of various factors in governing gene flow, however, may differ between species in biologically relevant ways. We investigated the role of demographic factors (population size and sex-biased dispersal) and physical features (geographic distance, island size and climatological winds) on patterns of genetic structure and gene flow for two lineages of Greater Antillean bats. We used microsatellite genetic data to estimate demographic characteristics, infer population genetic structure, and estimate gene flow among island populations of Erophylla sezekorni/E. bombifrons and Macrotus waterhousii (Chiroptera: Phyllostomidae). Using a landscape genetics approach, we asked if geographic distance, island size, or climatological winds mediate historical gene flow in this system. Samples from 13 islands spanning Erophylla's range clustered into five genetically distinct populations. Samples of M. waterhousii from eight islands represented eight genetically distinct populations. While we found evidence that a majority of historical gene flow between genetic populations was asymmetric for both lineages, we were not able to entirely rule out incomplete lineage sorting in generating this pattern. We found no evidence of contemporary gene flow except between two genetic populations of Erophylla. Both lineages exhibited significant isolation by geographic distance. Patterns of genetic structure and gene flow, however, were not explained by differences in relative effective population sizes, island area, sex-biased dispersal (tested only for Erophylla), or surface-level climatological winds. Gene flow among islands appears to be highly restricted, particularly for M. waterhousii, and we suggest that this species deserves increased taxonomic attention and conservation concern.


Asunto(s)
Quirópteros/genética , Animales , Flujo Génico , Variación Genética , Densidad de Población , Especificidad de la Especie
13.
Ann N Y Acad Sci ; 1223: 1-38, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21449963

RESUMEN

Ecosystem services are the benefits obtained from the environment that increase human well-being. Economic valuation is conducted by measuring the human welfare gains or losses that result from changes in the provision of ecosystem services. Bats have long been postulated to play important roles in arthropod suppression, seed dispersal, and pollination; however, only recently have these ecosystem services begun to be thoroughly evaluated. Here, we review the available literature on the ecological and economic impact of ecosystem services provided by bats. We describe dietary preferences, foraging behaviors, adaptations, and phylogenetic histories of insectivorous, frugivorous, and nectarivorous bats worldwide in the context of their respective ecosystem services. For each trophic ensemble, we discuss the consequences of these ecological interactions on both natural and agricultural systems. Throughout this review, we highlight the research needed to fully determine the ecosystem services in question. Finally, we provide a comprehensive overview of economic valuation of ecosystem services. Unfortunately, few studies estimating the economic value of ecosystem services provided by bats have been conducted to date; however, we outline a framework that could be used in future studies to more fully address this question. Consumptive goods provided by bats, such as food and guano, are often exchanged in markets where the market price indicates an economic value. Nonmarket valuation methods can be used to estimate the economic value of nonconsumptive services, including inputs to agricultural production and recreational activities. Information on the ecological and economic value of ecosystem services provided by bats can be used to inform decisions regarding where and when to protect or restore bat populations and associated habitats, as well as to improve public perception of bats.


Asunto(s)
Quirópteros/fisiología , Conservación de los Recursos Naturales/métodos , Ecosistema , Agricultura/economía , Agricultura/métodos , Animales , Artrópodos , Conservación de los Recursos Naturales/economía , Ambiente , Cadena Alimentaria , Humanos , Control Biológico de Vectores/economía , Control Biológico de Vectores/métodos , Polinización/fisiología , Dispersión de Semillas/fisiología
14.
Mol Ecol Resour ; 8(3): 596-8, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-21585843

RESUMEN

We developed 12 polymorphic microsatellite loci for the buffy flower bat (Erophylla sezekorni) and 10 loci for Waterhouse's big-eared bat (Macrotus waterhousii). In E. sezekorni, we tested 65 individuals from three islands, Cuba, Exuma, and Abaco. Mean number of alleles per locus was 10.7 (range 5-20). In M. waterhousii, we tested 39 individuals from one island, Exuma. Mean number of alleles per locus was 6.9 (range 4-13). We will use these markers to study the phylogeography and mating system of these species.

15.
Biol Rev Camb Philos Soc ; 82(4): 573-90, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17944618

RESUMEN

Discussion of successional change has traditionally focused on plants. The role of animals in producing and responding to successional change has received far less attention. Dispersal of plant propagules by animals is a fundamental part of successional change in the tropics. Here we review the role played by frugivorous bats in successional change in tropical forests. We explore the similarities and differences of this ecological service provided by New and Old World seed-dispersing bats and conclude with a discussion of their current economic and conservation implications. Our review suggests that frugivorous New World phyllostomid bats play a more important role in early plant succession than their Old World pteropodid counterparts. We propose that phyllostomid bats have shared a long evolutionary history with small-seeded early successional shrubs and treelets while pteropodid bats are principally dispersers of the seeds of later successional canopy fruits. When species of figs (Ficus) are involved in the early stages of primary succession (e.g. in the river meander system in Amazonia and on Krakatau, Indonesia), both groups of bats are important contributors of propagules. Because they disperse and sometimes pollinate canopy trees, pteropodid bats have a considerable impact on the economic value of Old World tropical forests; phyllostomid bats appear to make a more modest direct contribution to the economic value of New World tropical forests. Nonetheless, because they critically influence forest regeneration, phyllostomid bats make an important indirect contribution to the economic value of these forests. Overall, fruit-eating bats play important roles in forest regeneration throughout the tropics, making their conservation highly desirable.


Asunto(s)
Quirópteros/fisiología , Ecosistema , Polinización/fisiología , Árboles/crecimiento & desarrollo , Clima Tropical , Animales , Frutas , Dinámica Poblacional
16.
Mol Ecol ; 12(11): 3191-8, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14629399

RESUMEN

Glossophaga longirostris and Leptonycteris curasoae are nectar-feeding bats associated with arid zones in northern South America. Despite their close phylogenetic relationship, sympatric condition and niche similarities, morphological and ecological evidence suggest that these species differ in dispersal capabilities. Using mitochondrial DNA, we tested the hypothesis that these species exhibit different levels of population structure that are congruent with their particular movement capabilities. We sequenced a section of the control region of mtDNA for 41 G. longirostris and 42 L. curasoae from 11 zones in Venezuela. Population subdivision in G. longirostris (FST = 0.725) was considerably higher than in L. curasoae (FST = 0.167). L. curasoae individuals shared haplotypes at greater distances (812 km) than G. longirostris (592 km). Our results offer preliminary evidence for one of two possible scenarios, either greater mobility in L. curasoae or a higher degree of female philopatry in G. longirostris.


Asunto(s)
Quirópteros/genética , Genética de Población , Geografía , Movimiento/fisiología , Animales , Secuencia de Bases , Quirópteros/fisiología , ADN Mitocondrial/genética , Clima Desértico , Haplotipos/genética , Modelos Genéticos , Datos de Secuencia Molecular , Dinámica Poblacional , Análisis de Secuencia de ADN , Venezuela
17.
Am J Bot ; 90(11): 1628-37, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21653338

RESUMEN

We conducted allozyme surveys of three Venezuelan self-incompatible chiropterophilous columnar cacti: two diploid species, Stenocereus griseus and Cereus repandus, and one tetraploid, Pilosocereus lanuginosus. The three cacti are pollinated by bats, and both bats and birds disperse seeds. Population sampling comprised two spatial scales: all Venezuelan arid zones (macrogeographic) and two arid regions in northwestern Venezuela (regional). Ten to 15 populations and 17-23 loci were analyzed per species. Estimates of genetic diversity were compared with those of other allozyme surveys in the Cactaceae to examine how bat-mediated gene dispersal affects the population genetic attributes of the three cacti. Genetic diversity was high for both diploid (P(s) = 94.1-100, P(p) = 56.7-72.3, H(s) = 0.182-0.242, H(p) = 0.161-0.205) and tetraploid (P(s) = 93.1, P(p) = 76.1, H(s) = 0.274, H(p) = 0.253) species. Within-population heterozygote deficit was detected in the three cacti at macrogeographic (F(IS) = 0.145-0.182) and regional (F(IS) = 0.057-0.174) levels. Low genetic differentiation was detected at both macrogeographic (G(ST) = 0.043-0.126) and regional (G(ST) = 0.009-0.061) levels for the three species, suggesting substantial gene flow among populations. Gene exchange among populations seems to be regulated by distance among populations. Our results support the hypothesis that bat-mediated gene dispersal confers high levels of genetic exchange among populations of the three columnar cacti, a process that enhances levels of genetic diversity within their populations.

18.
Evolution ; 32(1): 45-55, 1978 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28564099
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA