Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Am Chem Soc ; 145(8): 4583-4588, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36800319

RESUMEN

Fast, low-cost, and efficient energy storage technologies are urgently needed to balance the intermittence of sustainable energy sources. High-power capacitors using organic polymers offer a green and scalable answer. They require dielectrics with high permittivity (εr) and breakdown strength (EB), which bio-based poly(hydroxy urethane)s (PHUs) can provide. PHUs combine high concentrations of hydroxyl and carbamate groups, thus enhancing their εr, and a highly tunable glass transition (Tg), which dictates the regions of low dielectric losses. By reacting erythritol dicarbonate with bio-based diamines, fully bio-based PHUs were synthesized with Tg ∼ 50 °C, εr > 8, EB > 400 MV·m-1, and low losses (tan δ < 0.03). This results in energy storage performance comparable with the flagship petrochemical materials (discharge energy density, Ue > 6 J·cm-3) combined with a remarkably high discharge efficiency, with η = 85% at EB and up to 91% at 0.5 EB. These bio-based PHUs thus represent a highly promising route to green and sustainable energy storage.

2.
Small ; 19(7): e2205254, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36504447

RESUMEN

Block copolymer (BCP) self-assembly in thin films is an elegant method to generate nanometric features with tunable geometrical configurations. By combining directed assembly and hybridization methods, advances in nano-manufacturing have been attested over the past decades with flagship applications in lithography and optics. Nevertheless, the range of geometrical configurations is limited by the accessible morphologies inherent to the energy minimization process involved in BCP self-assembly. Layering of nanostructured BCP thin films has been recently proposed in order to enrich the span of nanostructures derived from BCP self-assembly with the formation of non-native heterostructures such as double-layered arrays of nanowires or dots-on-line and dots-in-hole hierarchical structures. In this work, the layer-by-layer method is further exploited for the generation of nano-mesh arrays using nanostructured BCP thin films. In particular, a subtle combination of chemical and topographical fields is leveraged in order to demonstrate design rules for the controlled registration of a BCP layer on top of an underneath immobilized one by the precise tuning of the interfacial chemical field between the two BCP layers.

3.
Nanotechnology ; 34(17)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36657158

RESUMEN

In this work, we investigated the self-assembly of a lamellar block copolymer (BCP) under different wetting conditions. We explored the influence of the chemical composition of under-layers and top-coats on the thin film stability, self-assembly kinetics and BCP domain orientation. Three different chemistries were chosen for these surface affinity modifiers and their composition was tuned in order to provide either neutral wetting (i.e. an out-of-plane lamellar structure), or affine wetting conditions (i.e. an in-plane lamellar structure) with respect to a sub-10 nm PS-b-PDMSB lamellar system. Using such controlled wetting configurations, the competition between the dewetting of the BCP layer and the self-organization kinetics was explored. We also evaluated the spreading parameter of the BCP films with respect to the configurations of surface-energy modifiers and demonstrated that BCP layers are intrinsically unstable to dewetting in a neutral configuration. Finally, the dewetting mechanisms were evaluated with respect to the different wetting configurations and we clearly observed that the rigidity of the top-coat is a key factor to delay BCP film instability.

4.
Nano Lett ; 21(1): 680-685, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33337891

RESUMEN

Electron states in semiconductor materials can be modified by quantum confinement. Adding to semiconductor heterostructures the concept of lateral geometry offers the possibility to further tailor the electronic band structure with the creation of unique flat bands. Using block copolymer lithography, we describe the design, fabrication, and characterization of multiorbital bands in a honeycomb In0.53Ga0.47As/InP heterostructure quantum well with a lattice constant of 21 nm. Thanks to an optimized surface quality, scanning tunnelling spectroscopy reveals the existence of a strong resonance localized between the lattice sites, signature of a p-orbital flat band. Together with theoretical computations, the impact of the nanopatterning imperfections on the band structure is examined. We show that the flat band is protected against the lateral and vertical disorder, making this industry-standard system particularly attractive for the study of exotic phases of matter.

5.
Biomacromolecules ; 22(12): 4956-4966, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34751573

RESUMEN

Three-dimensional (3D) bioprinting offers a great alternative to traditional techniques in tissue reconstruction, based on seeding cells manually into a scaffold, to better reproduce organs' complexity. When a suitable bioink is engineered with appropriate physicochemical properties, such a process can advantageously provide a spatial control of the patterning that improves tissue reconstruction. The design of an adequate bioink must fulfill a long list of criteria including biocompatibility, printability, and stability. In this context, we have developed a bioink containing a precisely controlled recombinant biopolymer, namely, elastin-like polypeptide (ELP). This material was further chemoselectively modified with cross-linkable moieties to provide a 3D network through photopolymerization. ELP chains were additionally either functionalized with a peptide sequence Gly-Arg-Gly-Asp-Ser (GRGDS) or combined with collagen I to enable cell adhesion. Our ELP-based bioinks were found to be printable, while providing excellent mechanical properties such as stiffness and elasticity in their cross-linked form. Besides, they were demonstrated to be biocompatible, showing viability and adhesion of dermal normal human fibroblasts (NHF). Expressions of specific extracellular matrix (ECM) protein markers as pro-collagen I, elastin, fibrillin, and fibronectin were revealed within the 3D network containing cells after only 18 days of culture, showing the great potential of ELP-based bioinks for tissue engineering.


Asunto(s)
Bioimpresión , Bioimpresión/métodos , Elastina , Humanos , Péptidos , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
6.
Molecules ; 26(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807816

RESUMEN

The ability of bottlebrush block copolymers (BBCPs) to self-assemble into ordered large periodic structures could greatly expand the scope of photonic and membrane technologies. In this paper, we describe a two-step synthesis of poly(l-lactide)-b-polystyrene (PLLA-b-PS) BBCPs and their rapid thin-film self-assembly. PLLA chains were grown from exo-5-norbornene-2-methanol via ring-opening polymerization (ROP) of l-lactide to produce norbornene-terminated PLLA. Norbonene-terminated PS was prepared using anionic polymerization followed by a termination reaction with exo-5-norbornene-2-carbonyl chloride. PLLA-b-PS BBCPs were prepared from these two norbornenyl macromonomers by a one-pot sequential ring opening metathesis polymerization (ROMP). PLLA-b-PS BBCPs thin-films exhibited cylindrical and lamellar morphologies depending on the relative block volume fractions, with domain sizes of 46-58 nm and periodicities of 70-102 nm. Additionally, nanoporous templates were produced by the selective etching of PLLA blocks from ordered structures. The findings described in this work provide further insight into the controlled synthesis of BBCPs leading to various possible morphologies for applications requiring large periodicities. Moreover, the rapid thin film patterning strategy demonstrated (>5 min) highlights the advantages of using PLLA-b-PS BBCP materials beyond their linear BCP analogues in terms of both dimensions achievable and reduced processing time.


Asunto(s)
Nanoestructuras/química , Poliestirenos/síntesis química , Rastreo Diferencial de Calorimetría , Norbornanos/química , Polimerizacion , Poliestirenos/química , Solventes/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Termogravimetría
7.
Langmuir ; 36(46): 13872-13880, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33175555

RESUMEN

Assembling ultrahigh-molecular-weight (UHMW) block copolymers (BCPs) in rapid time scales is perceived as a grand challenge in polymer science due to slow kinetics. Through surface engineering and identifying a nonvolatile solvent (propylene glycol methyl ether acetate, PGMEA), we showcase the impressive ability of a series of lamellar poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) BCPs to self-assemble directly after spin-coating. In particular, we show the formation of large-period (≈111 nm) lamellar structures from a neat UHMW PS-b-P2VP BCP. The significant influence of solvent-polymer solubility parameters are explored to enhance the polymer chain mobility. After optimization using solvent vapor annealing, increased feature order of ultralarge-period PS-b-P2VP BCP patterns in 1 h is achieved. Isolated metallic and dielectric features are also demonstrated to exemplify the promise that large BCP periods offer for functional applications. The methods described in this article center on industry-compatible patterning schemes, solvents, and deposition techniques. Thus, our straightforward UHMW BCP strategy potentially paves a viable and practical path forward for large-scale integration in various sectors, e.g., photonic band gaps, polarizers, and membranes that demand ultralarge period sizes.

8.
Macromol Rapid Commun ; 40(7): e1800860, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30632643

RESUMEN

3-Miktoarm star terpolymer architecture (3µ-ABC), consisting of three dissimilar polymer chains, A, B, and C connected at a junction point, provides a unique opportunity in the design of complex nanoscale patterns such as Archimedean tilings that are not accessible from linear ABC terpolymers. In this work, the synthesis and the self-assembly of 3-miktoarm star terpolymers, namely, polystyrene-arm-poly(2-vinylpyridine)-arm-polyisoprene (3µ-SPI) into Archimedean tiling patterns is described. Several 3µ-SPI terpolymers are produced via a mid-functional PS-b-P2VP, synthesized by sequential anionic polymerization, using a 1,1-diphenylethylene bearing a tert-butyldimethylsilyl-protected hydroxyl functionality as a core molecule. PI arms with different sizes are then linked to the deprotected hydroxyl function of the core molecule via a Steglich esterification. Solvent-annealed 3µ-SPI thin films exhibit nanoscale prisms arranged into a (4.6.12) Archimedean tiling pattern. Depending on the size of the low etch-resistant PI arm and the solvent selected to promote the self-assembly of 3µ-SPI thin films, the voided columns occupy the square or decagonal sites of the (4.6.12) pattern. The use of this (4.6.12) tiling produced for the first time from self-assembled 3µ-ABC thin films can be a promising route to build 2D photonic crystals having complete photonic band gaps, where the light propagation is completely prohibited.


Asunto(s)
Hemiterpenos/química , Látex/química , Nanoestructuras/química , Poliestirenos/química , Polivinilos/química , Estructura Molecular
9.
Angew Chem Int Ed Engl ; 58(51): 18471-18475, 2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31593354

RESUMEN

Zeolitic imidazolate frameworks (ZIFs) are a sub-class of metal-organic frameworks (MOFs). Although generally stable, ZIFs can undergo post-synthetic linker exchange (PSLE) in solution under mild conditions. Herein, we present a novel, solvent-free approach to post-synthetic linker exchange through exposure to linker vapor.

10.
Macromol Rapid Commun ; 39(7): e1700754, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29337412

RESUMEN

Nanotemplates derived from the self-assembly of AB-type block copolymers provide an elegant route to achieve well-defined metallic dot arrays, even if the variety of pattern symmetries is restricted due to the limited number of structures offered by microphase separated diblock copolymers. A strategy that relies on the use of complex network structures accessible through the self-assembly of linear ABC-type terpolymers is presented for the formation of metallic nanodots arrays with "outside-the-box" symmetries. Patterned templates formed by the cubic Q214 and orthorhombic O70 network structures are used as excellent platforms to build well-ordered gold nanodot arrays with unique p3m1 and p2 symmetries, respectively. A simple yet efficient blending strategy is used to tune the critical dimensions of the p3m1 pattern while laterally ordered gold nanodot arrays are also demonstrated through a directed self-assembly approach. Such highly ordered gold nanodots with tunable particle dimensions and array periods, enabling the control of their plasmonic responses, are attractive probes for biological imaging.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Polímeros/química
11.
Macromol Rapid Commun ; 39(9): e1800043, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29578265

RESUMEN

The synthesis and self-assembly in thin-film configuration of linear ABC triblock terpolymer chains consisting of polystyrene (PS), poly(2-vinylpyridine) (P2VP), and polyisoprene (PI) are described. For that purpose, a hydroxyl-terminated PS-b-P2VP (45 kg mol-1 ) building block and a carboxyl-terminated PI (9 kg mol-1 ) are first separately prepared by anionic polymerization, and then are coupled via a Steglich esterification reaction. This quantitative and metal-free catalyst synthesis route reveals to be very interesting since functionalization and purification steps are straightforward, and well-defined terpolymers are produced. A solvent vapor annealing (SVA) process is used to promote the self-assembly of frustrated PS-b-P2VP-b-PI chains into a thin-film core-shell double gyroid (Q230 , space group: Ia3¯d) structure. As terraces are formed within PS-b-P2VP-b-PI thin films during the SVA process under a CHCl3 vapor, different plane orientations of the Q230 structure ((211), (110), (111), and (100)) are observed at the polymer-air interface depending on the film thickness.


Asunto(s)
Butadienos/química , Hemiterpenos/química , Nanoestructuras/química , Pentanos/química , Poliestirenos/química , Polivinilos/química , Butadienos/síntesis química , Hemiterpenos/síntesis química , Tamaño de la Partícula , Pentanos/síntesis química , Polímeros/síntesis química , Polímeros/química , Poliestirenos/síntesis química , Polivinilos/síntesis química
12.
Small ; 13(12)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28092432

RESUMEN

Laterally ordered nanorings with a periodicity of 38 nm are produced from the directed self-assembly of poly(1,1-dimethylsilacyclobutane)-block-polystyrene-block-poly(methyl methacrylate) thin films on topographically patterned substrates. Such nanoscale arrays with vertically oriented rings are highly desired in technological applications including memory using magnetic recording, metamaterial, waveguide, etc.

13.
Small ; 13(20)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28383179

RESUMEN

The directed self-assembly of diblock copolymer chains (poly(1,1-dimethyl silacyclobutane)-block-polystyrene, PDMSB-b-PS) into a thin film double gyroid structure is described. A decrease of the kinetics of a typical double-wave pattern formation is reported within the 3D-nanostructure when the film thickness on mesas is lower than the gyroid unit cell. However, optimization of the solvent-vapor annealing process results in very large grains (over 10 µm²) with specific orientation (i.e., parallel to the air substrate) and direction (i.e., along the groove direction) of the characteristic (211) plane, demonstrated by templating sub-100-nm-thick PDMSB-b-PS films.

14.
Langmuir ; 33(6): 1507-1515, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28099813

RESUMEN

A major issue that inhibits the large-scale fabrication of organic solar modules is the use of chlorinated solvents considered to be toxic and hazardous. In this work, composite particles of poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4,7-di-2-thienyl-2',1',3'-benzothiadiazole] (PCDTBT) and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) were obtained in water from a versatile and a ready-to-market methodology based on postpolymerization miniemulsification. Depending on the experimental conditions, size-controlled particles comprising both the electron donor and the electron acceptor were obtained and characterized using transmission electron microscopy (TEM), atomic force microscopy (AFM), small-angle neutron scattering (SANS), UV-visible absorption, and fluorescence spectroscopy. Intimate mixing of the two components was definitely asserted through PCDTBT fluorescence quenching in the composite nanoparticles. The water-based inks were used for the preparation of photovoltaic active layers that were subsequently integrated into organic solar cells.

15.
Macromol Rapid Commun ; 37(3): 221-6, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26618916

RESUMEN

Well-defined single-ion diblock copolymers consisting of a Li-ion conductive poly(styrenesulfonyllithium(trifluoromethylsulfonyl)imide) (PSLiTFSI) block associated with a glassy polystyrene (PS) block have been synthesized via reversible addition fragmentation chain transfer polymerization. Conductivity anisotropy ratio up to 1000 has been achieved from PS-b-PSLiTFSI thin films by comparing Li-ion conductivities of out-of-plane (aligned) and in-plane (antialigned) cylinder morphologies at 40 °C. Blending of PS-b-PSLiTFSI thin films with poly(ethylene oxide) homopolymer (hPEO) enables a substantial improvement of Li-ion transport within aligned cylindrical domains, since hPEO, preferentially located in PSLiTFSI domains, is an excellent lithium-solvating material. Results are also compared with unblended and blended PSLiTFSI homopolymer (hPSLiTFSI) homologues, which reveals that ionic conductivity is improved when thin films are nanostructured.


Asunto(s)
Conductividad Eléctrica , Electrólitos/química , Litio/química , Polímeros/química , Anisotropía , Cromatografía en Gel , Iones , Microscopía de Fuerza Atómica , Espectroscopía de Protones por Resonancia Magnética , Solventes/química , Temperatura
16.
Small ; 11(48): 6377-83, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26540591

RESUMEN

Laterally ordered sub-10 nm features are produced from the directed self-assembly of poly(1,1-dimethyl silacyclo-butane)-block-poly(methyl methacrylate) (PDMSB-b-PMMA) thin films on sinusoidal azobenzene-containing patterns. The use of sinusoidal surface relief grating enables the formation of very large grain areas (over several µm(2) ) consisting of out-of-plane PMMA cylinders.

17.
Langmuir ; 31(24): 6675-80, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26035091

RESUMEN

The preparation of magnetic inks stable over time made of L10-ordered FePt nanoparticles, thiol-ended poly(ethylene glycol) methyl ether (mPEO-SH) compatibilizing macromolecules and asymmetric polystyrene-block-poly(ethylene oxide) copolymers (BCP) as a subsequent self-organizing medium was optimized. It was demonstrated that the use of sacrificial MgO shells as physical barriers during the annealing stage for getting the L10-ordered state makes easier and more efficient the anchoring of compatibilizing PEO macromolecules onto the nanoparticles surface. L10-FePt grafted nanoparticles have shown a good colloidal stability and affinity with the PEO domains of the BCP leading to L10-FePt/BCP composite thin layers with individual magnetic dots dispersed in the BCP matrix.

18.
Macromol Rapid Commun ; 35(4): 422-30, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24338859

RESUMEN

A poly(ionic liquid)-based block copolymer (PIL BCP), namely, poly(vinyl acetate)-b-poly(N-vinyl-3-butylimidazolium bromide), PVAc-b-PVBuImBr, is synthesized by sequential cobalt-mediated radical polymerization (CMRP). A PVAc precursor is first prepared at 30 °C in bulk by CMRP of VAc, using bis(acetylacetonato)cobalt(II), Co(acac)2, and a radical source (V-70). Growth of PVBuImBr from PVAc-Co(acac)2 is accomplished by CMRP in DMF/MeOH (2:1, v/v). This PIL BCP self-assembles in the sub-micron size range into aggregated core-shell micelles in THF, whereas polymeric vesicles are observed in water, as evidenced by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Thin-solid sample cut from raw materials analyzed by TEM shows an ordered lamellar organization by temperature-dependent synchrotron small-angle X-ray scattering (SAXS). Anion exchange can be accomplished to achieve the corresponding PIL BCP with bis(trifluorosulfonyl)imide (Tf2 N(-)) anions, which also gives rise to an ordered lamellar phase in bulk samples. A complete suppression of SAXS second-order reflection suggests that this compound has a symmetric volume fraction (f ≈ 0.5). SAXS characterization of both di- and triblock PIL BCP analogues previously reported also shows a lamellar phase of very similar behavior, with only an increase of the period by about 8% at 60 °C.


Asunto(s)
Cobalto/química , Radicales Libres/química , Líquidos Iónicos/química , Polímeros/química , Micelas , Polímeros/síntesis química , Agua/química
19.
ACS Appl Mater Interfaces ; 16(21): 27841-27849, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38758246

RESUMEN

The directed self-assembly (DSA) of block copolymers (BCPs) is a promising next-generation lithography technique for high-resolution patterning. However, achieving lithographically applicable BCP organization such as out-of-plane lamellae requires proper tuning of interfacial energies between the BCP domains and the substrate, which remains difficult to address effectively and efficiently with high-χ BCPs. Here, we present the successful generation of anisotropic wetting by plasma treatment on patterned spin-on-carbon (SOC) substrates and its application to the DSA of a high-χ Si-containing material, poly(1,1-dimethylsilacyclobutane)-block-polystyrene (PDMSB-b-PS), with a 9 nm half pitch. Exposing the SOC substrate to different plasma chemistries promotes the vertical alignment of the PDMSB-b-PS lamellae within the trenches. In particular, a patterned substrate treated with HBr/O2 plasma gives both a neutral wetting at the bottom interface and a strong PS-affine wetting at the sidewalls of the SOC trenches to efficiently guide the vertical BCP lamellae. Furthermore, prolonged exposure to HBr/O2 plasma enables an adjustment of the trench width and an increased density of BCP lines on the substrate. Experimental observations are in agreement with a free energy configurational model developed to describe the system. These advances, which could be easily implemented in industry, could contribute to the wider adoption of self-assembly techniques in microelectronics, and beyond to applications such as metasurfaces, surface-enhanced Raman spectroscopy, and sensing technologies.

20.
ACS Appl Mater Interfaces ; 15(19): 23736-23748, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37134266

RESUMEN

Top and bottom interfaces of high-χ cylinder-forming polystyrene-block-maltoheptaose (PS-b-MH) diblock copolymer (BCP) thin films are manipulated using cross-linked copolymer underlayers and a fluorinated phase-preferential surface-active polymer (SAP) additive to direct the self-assembly (both morphology and orientation) of BCP microdomains into sub-10 nm patterns. A series of four photo-cross-linkable statistical copolymers with various contents of styrene, a 4-vinylbenzyl azide cross-linker, and a carbohydrate-based acrylamide are processed into 15 nm-thick cross-linked passivation layers on silicon substrates. A partially fluorinated analogue of the PS-b-MH phase-preferential SAP additive is designed to tune the surface energy of the top interface. The self-assembly of PS-b-MH thin films on top of different cross-linked underlayers and including 0-20 wt % of SAP additive is investigated by atomic force microscopy and synchrotron grazing incidence small-angle X-ray scattering analysis. The precise manipulation of the interfaces of ca. 30 nm thick PS-b-MH films not only allows the control of the in-plane/out-of-plane orientation of hexagonally packed (HEX) cylinders but also promotes epitaxial order-order transitions from HEX cylinders to either face-centered orthorhombic or body-centered cubic spheres without modifying the volume fraction of both blocks. This general approach paves the way for the controlled self-assembly of other high-χ BCP systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA