Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Cell Biol ; 151(2): 467-78, 2000 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-11038191

RESUMEN

The specific localization of L-type Ca(2+) channels in skeletal muscle triads is critical for their normal function in excitation-contraction (EC) coupling. Reconstitution of dysgenic myotubes with the skeletal muscle Ca(2+) channel alpha(1S) subunit restores Ca(2+) currents, EC coupling, and the normal localization of alpha(1S) in the triads. In contrast, expression of the neuronal alpha(1A) subunit gives rise to robust Ca(2+) currents but not to triad localization. To identify regions in the primary structure of alpha(1S) involved in the targeting of the Ca(2+) channel into the triads, chimeras of alpha(1S) and alpha(1A) were constructed, expressed in dysgenic myotubes, and their subcellular distribution was analyzed with double immunofluorescence labeling of the alpha(1S)/alpha(1A) chimeras and the ryanodine receptor. Whereas chimeras containing the COOH terminus of alpha(1A) were not incorporated into triads, chimeras containing the COOH terminus of alpha(1S) were correctly targeted. Mapping of the COOH terminus revealed a triad-targeting signal contained in the 55 amino-acid sequence (1607-1661) proximal to the putative clipping site of alpha(1S). Transferring this triad targeting signal to alpha(1A) was sufficient for targeting and clustering the neuronal isoform into skeletal muscle triads and caused a marked restoration of Ca(2+)-dependent EC coupling.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Músculo Esquelético/fisiología , Señales de Clasificación de Proteína , Transporte de Proteínas , Potenciales de Acción , Secuencia de Aminoácidos , Calcio/metabolismo , Conductividad Eléctrica , Uniones Intercelulares/metabolismo , Datos de Secuencia Molecular , Técnicas de Placa-Clamp , Isoformas de Proteínas , Subunidades de Proteína , Proteínas Recombinantes de Fusión
2.
J Cell Biol ; 137(4): 859-70, 1997 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-9151688

RESUMEN

Rapid release of calcium from the sarcoplasmic reticulum (SR) of skeletal muscle fibers during excitation-contraction (e-c) coupling is initiated by the interaction of surface membrane calcium channels (dihydropyridine receptors; DHPRs) with the calcium release channels of the SR (ryanodine receptors; RyRs, or feet). We studied the early differentiation of calcium release units, which mediate this interaction, in BC3H1 cells. Immunofluorescence labelings of differentiating myocytes with antibodies against alpha1 and alpha2 subunits of DHPRs, RyRs, and triadin show that the skeletal isoforms of all four proteins are abundantly expressed upon differentiation, they appear concomitantly, and they are colocalized. The transverse tubular system is poorly organized, and thus clusters of e-c coupling proteins are predominantly located at the cell periphery. Freeze fracture analysis of the surface membrane reveals tetrads of large intramembrane particles, arranged in orderly arrays. These appear concomitantly with arrays of feet (RyRs) and with the appearance of DHPR/RyS clusters, confirming that the four components of the tetrads correspond to skeletal muscle DHPRs. The arrangement of tetrads and feet in developing junctions indicates that incorporation of DHPRs in junctional domains of the surface membrane proceeds gradually and is highly coordinated with the formation of RyR arrays. Within the arrays, tetrads are positioned at a spacing of twice the distance between the feet. The incorporation of individual DHPRs into tetrads occurs exclusively at positions corresponding to alternate feet, suggesting that the assembly of RyR arrays not only guides the assembly of tetrads but also determines their characteristic spacing in the junction.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas Portadoras , Proteínas Musculares/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio Tipo L , Línea Celular , Membrana Celular/ultraestructura , Técnica del Anticuerpo Fluorescente Indirecta , Técnica de Fractura por Congelación , Péptidos y Proteínas de Señalización Intracelular , Sustancias Macromoleculares , Ratones , Microscopía Electrónica , Músculo Esquelético/química , Canal Liberador de Calcio Receptor de Rianodina , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/ultraestructura
3.
J Cell Biol ; 134(2): 375-87, 1996 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8707823

RESUMEN

Muscular dysgenesis (mdg/mdg), a mutation of the skeletal muscle dihydropyridine receptor (DHPR) alpha 1 subunit, has served as a model to study the functions of the DHPR in excitation-contraction coupling and its role in triad formation. We have investigated the question of whether the lack of the DHPR in dysgenic skeletal muscle results in a failure of triad formation, using cell lines (GLT and NLT) derived from dysgenic (mdg/mdg) and normal (+/+) muscle, respectively. The lines were generated by transfection of myoblasts with a plasmid encoding a Large T antigen. Both cell lines express muscle-specific proteins and begin organization of sarcomeres as demonstrated by immunocytochemistry. Similar to primary cultures, dysgenic (GLT) myoblasts show a higher incidence of cell fusion than their normal counterparts (NLT). NLT myotubes develop spontaneous contractile activity, and fluorescent Ca2+ recordings show Ca2+ release in response to depolarization. In contrast, GLTs show neither spontaneous nor depolarization-induced Ca2+ transients, but do release Ca2+ from the sarcoplasmic reticulum (SR) in response to caffeine. Despite normal transverse tubule (T-tubule) formation, GLT myotubes lack the alpha 1 subunit of the skeletal muscle DHPR, and the alpha 2 subunit is mistargeted. Nevertheless, the ryanodine receptor (RyR) frequently develops its normal, clustered organization in the absence of both DHPR alpha subunits in the T-tubules. In EM, these RyR clusters correspond to T-tubule/SR junctions with regularly spaced feet. These findings provide conclusive evidence that interactions between the DHPR and RyR are not involved in the formation of triad junctions or in the normal organization of the RyR in the junctional SR.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Animales , Canales de Calcio/genética , Canales de Calcio Tipo L , Línea Celular , Fusión de Membrana , Proteínas Musculares/genética , Músculo Esquelético/citología , Músculo Esquelético/ultraestructura , Ratas , Canal Liberador de Calcio Receptor de Rianodina
4.
J Cell Biol ; 146(3): 621-30, 1999 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-10444070

RESUMEN

The type 3 ryanodine receptor (RyR3) is a ubiquitous calcium release channel that has recently been found in mammalian skeletal muscles. However, in contrast to the skeletal muscle isoform (RyR1), neither the subcellular distribution nor the physiological role of RyR3 are known. Here, we used isoform-specific antibodies to localize RyR3 in muscles of normal and RyR knockout mice. In normal hind limb and diaphragm muscles of young mice, RyR3 was expressed in all fibers where it was codistributed with RyR1 and with the skeletal muscle dihydropyridine receptor. This distribution pattern indicates that RyR3 is localized in the triadic junctions between the transverse tubules and the sarcoplasmic reticulum. During development, RyR3 expression declined rapidly in some fibers whereas other fibers maintained expression of RyR3 into adulthood. Comparing the distribution of RyR3-containing fibers with that of known fiber types did not show a direct correlation. Targeted deletion of the RyR1 or RyR3 gene resulted in the expected loss of the targeted isoform, but had no adverse effects on the expression and localization of the respective other RyR isoform. The localization of RyR3 in skeletal muscle triads, together with RyR1, is consistent with an accessory function of RyR3 in skeletal muscle excitation-contraction coupling.


Asunto(s)
Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Envejecimiento , Animales , Animales Recién Nacidos , Western Blotting , Canales de Calcio/metabolismo , Canales de Calcio Tipo L , ATPasas Transportadoras de Calcio/metabolismo , Diafragma/citología , Diafragma/metabolismo , Regulación hacia Abajo , Técnica del Anticuerpo Fluorescente , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Miembro Posterior/citología , Miembro Posterior/metabolismo , Ratones , Ratones Noqueados , Fibras Musculares Esqueléticas/enzimología , Músculo Esquelético/citología , Músculo Esquelético/embriología , Músculo Esquelético/ultraestructura , Cadenas Pesadas de Miosina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Retículo Sarcoplasmático/enzimología , Retículo Sarcoplasmático/metabolismo
5.
J Cell Biol ; 115(5): 1345-56, 1991 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-1659576

RESUMEN

We have studied the subcellular distribution of the alpha 1 and alpha 2 subunits of the skeletal muscle dihydropyridine (DHP) receptor with immunofluorescence labeling of normal and dysgenic (mdg) muscle in culture. In normal myotubes both alpha subunits were localized in clusters associated with the T-tubule membranes of longitudinally as well as transversely oriented T-tubules. The DHP receptor-rich domains may represent the sites where triad junctions with the sarcoplasmic reticulum are being formed. In cultures from dysgenic muscle the alpha 1 subunit was undetectable and the distribution patterns of the alpha 2 subunit were abnormal. The alpha subunit did not form clusters nor was it discretely localized in the T-tubule system. Instead, alpha 2 was found diffusely distributed in parts of the T-system, in structures in the perinuclear region and in the plasma membrane. These results suggest that an interaction between the two alpha subunits is required for the normal distribution of the alpha 2 subunit in the T-tubule membranes. Spontaneous fusion of normal non-muscle cells with dysgenic myotubes resulted in a regional expression of the alpha 1 polypeptide near the foreign nuclei, thus defining the nuclear domain of a T-tubule membrane protein in multi-nucleated muscle cells. Furthermore, the normal intracellular distribution of the alpha 2 polypeptide was restored in domains containing a foreign "rescue" nucleus; this supports the idea that direct interactions between the DHP receptor alpha 1 and alpha 2 subunits are involved in the organization of the junctional T-tubule membranes.


Asunto(s)
Músculos/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Animales Recién Nacidos , Anticuerpos Monoclonales , Especificidad de Anticuerpos , Canales de Calcio , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Ratones , Músculos/citología , Músculos/embriología , Ratas , Ratas Endogámicas , Receptores Nicotínicos/química
6.
J Cell Biol ; 103(6 Pt 1): 2299-309, 1986 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-3782298

RESUMEN

The biosynthesis of the peptides caerulein and PGLa in granular skin glands of Xenopus laevis proceeds through a pathway that involves discrete morphological rearrangements of the entire secretory compartment. Immunocytochemical localization of these peptides during gland development indicates that biosynthetic precursors are synthesized in intact secretory cells, whereas posttranslational processing requires morphological reorganization to a vacuolated stage. The bulk of the processed secretory material is then stored in vacuolae-derived storage granules. In the mature gland, storage granules are still formed at a low level. However, in this case processing takes place in a distinct cytoplasmic structure, the multicored body, which we suggest to be functionally equivalent to vacuolae. When granular glands regenerate after having lost all their storage granules upon strong stimuli, another morphological pathway is used. 2 wk after gland depletion, secretory cells become arranged in a monolayer that covers the luminal surface of the gland. Storage granules are formed continuously within these intact secretory cells. Here, precursor processing does not require a vacuolated stage as in newly generated glands but occurs in multicored bodies. Most storage granules seem to be formed in the third week of regeneration. The high biosynthetic activity is also reflected by the high activity of the putative processing enzyme dipeptidyl aminopeptidase during this period of regeneration.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Ceruletida/genética , Gránulos Citoplasmáticos/ultraestructura , Péptidos/genética , Glándulas Sebáceas/metabolismo , Piel/metabolismo , Animales , Ceruletida/biosíntesis , Microscopía Electrónica , Biosíntesis de Péptidos , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Regeneración , Glándulas Sebáceas/citología , Glándulas Sebáceas/ultraestructura , Piel/citología , Piel/ultraestructura , Xenopus
7.
J Cell Biol ; 123(5): 1161-74, 1993 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-8245124

RESUMEN

Excitation-contraction (E-C) coupling is thought to involve close interactions between the calcium release channel (ryanodine receptor; RyR) of the sarcoplasmic reticulum (SR) and the dihydropyridine receptor (DHPR) alpha 1 subunit in the T-tubule membrane. Triadin, a 95-kD protein isolated from heavy SR, binds both the RyR and DHPR and may thus participate in E-C coupling or in interactions responsible for the formation of SR/T-tubule junctions. Immunofluorescence labeling of normal mouse myotubes shows that the RyR and triadin co-aggregate with the DHPR in punctate clusters upon formation of functional junctions. Dysgenic myotubes with a deficiency in the alpha 1 subunit of the DHPR show reduced expression and clustering of RyR and triadin; however, both proteins are still capable of forming clusters and attaining mature cross-striated distributions. Thus, the molecular organization of the RyR and triadin in the terminal cisternae of SR as well as its association with the T-tubules are independent of interactions with the DHPR alpha 1 subunit. Analysis of calcium transients in dysgenic myotubes with fluorescent calcium indicators reveals spontaneous and caffeine-induced calcium release from intracellular stores similar to those of normal muscle; however, depolarization-induced calcium release is absent. Thus, characteristic calcium release properties of the RyR do not require interactions with the DHPR; neither do they require the normal organization of the RyR in the terminal SR cisternae. In hybrids of dysgenic myotubes fused with normal cells, both action potential-induced calcium transients and the normal clustered organization of the RyR are restored in regions expressing the DHPR alpha 1 subunit.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Proteínas Portadoras , Microtúbulos/metabolismo , Proteínas Musculares/metabolismo , Músculos/metabolismo , Retículo Sarcoplasmático/metabolismo , Secuencia de Aminoácidos , Animales , Canales de Calcio/aislamiento & purificación , Canales de Calcio Tipo L , ATPasas Transportadoras de Calcio/aislamiento & purificación , ATPasas Transportadoras de Calcio/metabolismo , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Péptidos y Proteínas de Señalización Intracelular , Sustancias Macromoleculares , Ratones , Ratones Mutantes , Microscopía Fluorescente , Microscopía de Contraste de Fase , Datos de Secuencia Molecular , Proteínas Musculares/aislamiento & purificación , Músculos/citología , Músculos/embriología , Ratas , Ratas Sprague-Dawley , Canal Liberador de Calcio Receptor de Rianodina , Retículo Sarcoplasmático/ultraestructura
8.
J Cell Biol ; 120(2): 411-20, 1993 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-8421055

RESUMEN

The length and spatial organization of thin filaments in skeletal muscle sarcomeres are precisely maintained and are essential for efficient muscle contraction. While the major structural components of skeletal muscle sarcomeres have been well characterized, the mechanisms that regulate thin filament length and spatial organization are not well understood. Tropomodulin is a new, 40.6-kD tropomyosin-binding protein from the human erythrocyte membrane skeleton that binds to one end of erythrocyte tropomyosin and blocks head-to-tail association of tropomyosin molecules along actin filaments. Here we show that rat psoas skeletal muscle contains tropomodulin based on immunoreactivity, identical apparent mobility on SDS gels, and ability to bind muscle tropomyosin. Results from immunofluorescence labeling of isolated myofibrils at resting and stretched lengths using anti-erythrocyte tropomodulin antibodies indicate that tropomodulin is localized at or near the free (pointed) ends of the thin filaments; this localization is not dependent on the presence of myosin thick filaments. Immunoblotting of supernatants and pellets obtained after extraction of myosin from myofibrils also indicates that tropomodulin remains associated with the thin filaments. 1.2-1.6 copies of muscle tropomodulin are present per thin filament in myofibrils, supporting the possibility that one or two tropomodulin molecules may be associated with the two terminal tropomyosin molecules at the pointed end of each thin filament. Although a number of proteins are associated with the barbed ends of the thin filaments at the Z disc, tropomodulin is the first protein to be specifically located at or near the pointed ends of the thin filaments. We propose that tropomodulin may cap the tropomyosin polymers at the pointed end of the thin filament and play a role in regulating thin filament length.


Asunto(s)
Citoesqueleto de Actina/ultraestructura , Proteínas Portadoras/análisis , Proteínas de Microfilamentos , Proteínas Musculares/análisis , Músculos/ultraestructura , Miofibrillas/ultraestructura , Sarcómeros/ultraestructura , Animales , Anticuerpos , Electroforesis en Gel de Poliacrilamida , Técnica del Anticuerpo Fluorescente , Peso Molecular , Músculos/química , Ratas , Tropomodulina
9.
Neuron ; 3(2): 163-75, 1989 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-2560390

RESUMEN

We have used immunogold electron microscopy to study the organization of the acetylcholine receptor, 43 kd protein, voltage-sensitive Na+ channel, and ankyrin in the postsynaptic membrane of the rat neuromuscular junction. The acetylcholine receptor and the 43 kd protein are concentrated at the crests of the postsynaptic folds, coextensive with the subsynaptic density. In contrast, Na+ channels and ankyrin are concentrated in the membranes of the troughs and in perijunctional membranes, both characterized by discontinuous submembrane electron-dense plaques. This configuration of interspersed postsynaptic membrane domains enriched in either Na+ channels or acetylcholine receptors may facilitate the initiation of the muscle action potential. Furthermore, the results support the involvement of ankyrin in immobilizing Na+ channels in specific membrane domains, analogous to the proposed involvement of the 43 kd protein in acetylcholine receptor immobilization.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Proteínas de la Membrana/metabolismo , Unión Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo , Canales de Sodio/ultraestructura , Animales , Ancirinas , Proteínas Sanguíneas/análisis , Proteínas Sanguíneas/fisiología , Diafragma/citología , Diafragma/metabolismo , Inmunohistoquímica , Proteínas de la Membrana/análisis , Proteínas de la Membrana/fisiología , Microscopía Electrónica , Unión Neuromuscular/análisis , Unión Neuromuscular/ultraestructura , Ratas , Receptores Colinérgicos/análisis , Canales de Sodio/metabolismo , Canales de Sodio/fisiología , Membranas Sinápticas/análisis , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestructura
10.
Neuron ; 13(1): 167-77, 1994 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8043275

RESUMEN

Membrane depolarization inactivates acetylcholine receptor (AChR) genes in skeletal muscle. We have studied this process in C2C12 cells, focusing on the role of calcium. Cytoplasmic calcium was monitored with fluo-3, and the activity of receptor genes was measured with a sensitive transcript elongation assay. Removal of extracellular calcium or blockage of L-type calcium channels disrupts signaling, even when release of calcium from the sarcoplasmic reticulum (SR) is not impeded, whereas L channel agonists induce signaling without membrane depolarization or release of calcium from intracellular stores. Activators of calcium release from the SR do not inhibit AChR genes, either in C2C12 or in chicken skeletal muscle in vivo. It appears that calcium ions do not act as messengers between sarcolemma and nucleus but target a sensor near their port of entry where they initiate a signal that bypasses the SR.


Asunto(s)
Canales de Calcio/fisiología , Calcio/metabolismo , Músculos/fisiología , Retículo Sarcoplasmático/fisiología , Transducción de Señal , Transcripción Genética , Potenciales de Acción , Animales , Línea Celular , Membrana Celular/fisiología , Pollos , Citoplasma/metabolismo , Estimulación Eléctrica , Matriz Extracelular/metabolismo , Ratones , Cloruro de Potasio/farmacología
11.
Neuron ; 5(3): 339-51, 1990 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-2169270

RESUMEN

We have studied the subcellular distribution of the alpha 1 and alpha 2 subunits of the dihydropyridine (DHP) receptor and ankyrin in rat skeletal muscle with immunofluorescence and immunogold labeling techniques. All three proteins were concentrated in the triad junction formed between the T-tubules and sarcoplasmic reticulum. The alpha 1 and alpha 2 subunits of the DHP receptor were colocalized in the junctional T-tubule membrane, supporting their proposed association in a functional complex and the possible participation of the alpha 2 subunit in excitation-contraction coupling. Ankyrin label in the triad showed a distribution different from that of the DHP receptor subunits. In addition, ankyrin was found in longitudinally oriented structures outside the triad. Thus, ankyrin might be involved in organizing the triad and in immobilizing integral membrane proteins in T-tubules and the sarcoplasmic reticulum.


Asunto(s)
Proteínas Sanguíneas/análisis , Proteínas de la Membrana/análisis , Músculos/análisis , Receptores Nicotínicos/análisis , Animales , Ancirinas , Canales de Calcio , Técnica del Anticuerpo Fluorescente , Oro , Técnicas Inmunológicas , Microscopía Electrónica , Músculos/ultraestructura , Ratas , Distribución Tisular
12.
Mol Biol Cell ; 5(10): 1105-18, 1994 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-7865878

RESUMEN

The relationship between the molecular composition and organization of the triad junction and the development of excitation-contraction (E-C) coupling was investigated in cultured skeletal muscle. Action potential-induced calcium transients develop concomitantly with the first expression of the dihydropyridine receptor (DHPR) and the ryanodine receptor (RyR), which are colocalized in clusters from the time of their earliest appearance. These DHPR/RyR clusters correspond to junctional domains of the transverse tubules (T-tubules) and sarcoplasmic reticulum (SR), respectively. Thus, at first contact T-tubules and SR form molecularly and structurally specialized membrane domains that support E-C coupling. The earliest T-tubule/SR junctions show structural characteristics of mature triads but are diverse in conformation and typically are formed before the extensive development of myofibrils. Whereas the initial formation of T-tubule/SR junctions is independent of association with myofibrils, the reorganization into proper triads occurs as junctions become associated with the border between the A band and the I band of the sarcomere. This final step in triad formation manifests itself in an increased density and uniformity of junctions in the cytoplasm, which in turn results in increased calcium release and reuptake rates.


Asunto(s)
Músculo Esquelético/embriología , Potenciales de Acción , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Canales de Calcio Tipo L , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Microscopía Electrónica , Contracción Muscular/fisiología , Proteínas Musculares/metabolismo , Músculo Esquelético/fisiología , Músculo Esquelético/ultraestructura , Ratas , Canal Liberador de Calcio Receptor de Rianodina , Retículo Sarcoplasmático/fisiología , Retículo Sarcoplasmático/ultraestructura , Distribución Tisular
13.
FEBS Lett ; 474(1): 93-8, 2000 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-10828458

RESUMEN

A full-length and a C-terminally truncated form of the calcium channel alpha(1S) subunit can be isolated from skeletal muscle. Here we studied whether full-length alpha(1S) is functionally incorporated into the skeletal muscle excitation-contraction coupling apparatus. A fusion protein of alpha(1S) with the green fluorescent protein attached to its C-terminus (alpha(1S)-GFP) or alpha(1S) and GFP separately (alpha(1S)+GFP) were expressed in dysgenic myotubes, which lack endogenous alpha(1S). Full-length alpha(1S)-GFP was targeted into triad junctions and restored calcium currents and excitation-contraction coupling. GFP remained colocalized with alpha(1S), indicating that intact alpha(1S)-GFP was inserted into triads and that the C-terminus remained associated with the excitation-contraction coupling apparatus.


Asunto(s)
Canales de Calcio Tipo L/genética , Expresión Génica , Músculo Esquelético/metabolismo , Transfección , Canales de Calcio Tipo L/deficiencia , Canales de Calcio Tipo L/fisiología , Línea Celular , Membrana Celular/metabolismo , Conductividad Eléctrica , Estimulación Eléctrica , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Microtúbulos/metabolismo , Contracción Muscular , Proteínas Recombinantes de Fusión , Retículo Sarcoplasmático/metabolismo
14.
Neuroscience ; 253: 330-40, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24012836

RESUMEN

Neurotransmitter release probability is related by high power to the local concentration of calcium in presynaptic terminals, which in turn is controlled by voltage-gated calcium channels. P/Q- and N-type channels trigger synaptic transmission in the majority of neurons of the central nervous system. However, whether and under which conditions both channel types act cooperatively or independently is still insufficiently understood. Previous studies suggested either a dominance of N- or P/Q-type channels, or a synergistic action of both channels, depending on the experimental paradigms. Thus, to provide insight into the properties of neurotransmitter release in cultured mouse hippocampal neurons, we used quantitative analysis of FM dye release from presynaptic boutons induced by high potassium membrane depolarization. Increasing extracellular potassium concentrations revealed a sigmoid dependence of FM dye release to the stimulation strength. Individual and combined application of the P/Q- and N-type channel-specific blockers ω-agatoxin-IVA and ω-conotoxin-GVIA, respectively, allowed us to specifically isolate the contribution of both channel types to release triggered with 40 mM KCl. Analysis of the release kinetics and the fractional release amplitude demonstrate that, whereas in only 15% of the synapses release depended exclusively on P/Q-type channels, the majority of synapses (85%) contained both N- and P/Q-type channels. Nevertheless, the kinetics of FM dye release in synapses containing both channel types was determined by the P/Q-type channels. Together, our data suggest a more direct coupling of P/Q-type channels to synaptic release compared to N-type channels, which may explain the high prevalence of neurological P/Q-type channelopathies.


Asunto(s)
Canales de Calcio Tipo N/metabolismo , Colorantes Fluorescentes/farmacocinética , Hipocampo/citología , Neuronas/citología , Terminales Presinápticos/metabolismo , Compuestos de Piridinio/farmacocinética , Compuestos de Amonio Cuaternario/farmacocinética , Animales , Cloruro de Cadmio/farmacología , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Femenino , Ratones , Ratones Endogámicos BALB C , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Cloruro de Potasio/farmacología , Terminales Presinápticos/efectos de los fármacos , omega-Agatoxina IVA/farmacología , omega-Conotoxina GVIA/farmacología
15.
Neuroscience ; 167(3): 786-98, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20188150

RESUMEN

The importance and diversity of calcium signaling in the brain is mirrored by the expression of a multitude of voltage-activated calcium channel (Ca(V)) isoforms. Whereas the overall distributions of alpha(1) subunits are well established, the expression patterns of distinct channel isoforms in specific brain regions and neurons, as well as those of the auxiliary beta and alpha(2)delta subunits are still incompletely characterized. Further it is unknown whether neuronal differentiation and activity induce changes of Ca(V) subunit composition. Here we combined absolute and relative quantitative TaqMan reverse transcription PCR (RT-PCR) to analyze mRNA expression of all high voltage-activated Ca(V) alpha(1) subunits and all beta and alpha(2)delta subunits. This allowed for the first time the direct comparison of complete Ca(V) expression profiles of mouse cortex, hippocampus, cerebellum, and cultured hippocampal neurons. All brain regions expressed characteristic profiles of the full set of isoforms, except Ca(V)1.1 and Ca(V)1.4. In cortex development was accompanied by a general down regulation of alpha(1) and alpha(2)delta subunits and a shift from beta(1)/beta(3) to beta(2)/beta(4). The most abundant Ca(V) isoforms in cerebellum were Ca(V)2.1, beta(4), and alpha(2)delta-2, and in hippocampus Ca(V)2.3, beta(2), and alpha(2)delta-1. Interestingly, cultured hippocampal neurons also expressed the same Ca(V) complement as adult hippocampus. During differentiation specific Ca(V) isoforms experienced up- or down-regulation; however blocking electrical activity did not affect Ca(V) expression patterns. Correlation analysis of alpha(1), beta and alpha(2)delta subunit expression throughout all examined preparations revealed a strong preference of Ca(V)2.1 for beta(4) and alpha(2)delta-2 and vice versa, whereas the other alpha(1) isoforms were non-selectively expressed together with each of the other beta and alpha(2)delta isoforms. Together our results revealed a remarkably stable overall Ca(2+) channel complement as well as tissue specific differences in expression levels. Developmental changes are likely determined by an intrinsic program and not regulated by changes in neuronal activity.


Asunto(s)
Encéfalo/metabolismo , Canales de Calcio/genética , Hipocampo/metabolismo , Envejecimiento/metabolismo , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Canales de Calcio/química , Señalización del Calcio/genética , Células Cultivadas , Cerebelo/citología , Cerebelo/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Regulación hacia Abajo/genética , Regulación de la Expresión Génica/fisiología , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos BALB C , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Subunidades de Proteína/química , Subunidades de Proteína/genética , ARN Mensajero/análisis , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
Dev Biol ; 154(2): 245-60, 1992 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-1426638

RESUMEN

Increased interest in the mechanism of excitation-contraction (E-C) coupling over the last few years has been accompanied by numerous investigations into the development of the underlying cellular structures. Areas of particular interest include: (1) the compartmentalization and specialization of an external and an internal membrane system, the T-tubules, and the sarcoplasmic reticulum, respectively; (2) interactions between the membrane proteins of both systems upon the formation of a junction, the triad; and (3) membrane-cytoskeletal interactions leading to the orderly arrangement of the triads with respect to the myofibrils. Structural studies using newly available specific molecular probes and a variety of in vivo and in vitro model systems have provided new insights into the cellular and molecular mechanisms involved in the development of the E-C coupling apparatus in skeletal muscle.


Asunto(s)
Músculos/embriología , Retículo Sarcoplasmático/ultraestructura , Animales , Contracción Muscular , Músculos/ultraestructura , Orgánulos/ultraestructura , Ratas
17.
Cell Motil Cytoskeleton ; 25(2): 143-57, 1993.
Artículo en Inglés | MEDLINE | ID: mdl-8324830

RESUMEN

We have investigated the onset and maturation of action potential- and calcium-induced calcium release from the sarcoplasmic reticulum during the differentiation of excitation-contraction coupling in skeletal muscle. Microfluorometry and video imaging of cultured myotubes loaded with the fluorescent calcium indicator fluo-3 revealed the dynamics, time course, and physiological properties of calcium transients as well as their changes during development. Spontaneous and stimulated contractions in well-differentiated myotubes are accompanied by brief (200-500 ms) increases in the concentration of free cytoplasmic calcium. These transients are modulated by sub-threshold concentrations of caffeine, resulting in a plateau of elevated calcium. Two novel types of calcium transients were observed in non-contracting myotubes. 1) Fast localized transients (FLTs) are radially restricted focal release events that occur spontaneously within the myoplasm at various densities and frequencies. 2) Upon addition of caffeine, propagating calcium waves are generated (35-70 microns/s velocity), which are accompanied by contractures. Aside from caffeine sensitivity, calcium waves and contraction-related sustained release events are similar in amplitude and duration, as well as in their inactivation and refractory properties. Thus, these transients may represent calcium-induced calcium release in quiescent and active myotubes, respectively. Following one calcium-induced calcium release event, myotubes become refractory to new calcium-induced transients; however, action potential-induced transients and FLTs are not blocked. This suggests that these transients occur by distinct release mechanisms and that dual modes of calcium release exist prior to the coupling of calcium release to excitation.


Asunto(s)
Potenciales de Acción , Calcio/metabolismo , Músculos/metabolismo , Sistemas de Mensajero Secundario , Animales , Transporte Biológico/efectos de los fármacos , Cafeína/farmacología , Calcio/farmacología , Diferenciación Celular , Embrión de Pollo , Ratones , Contracción Muscular/efectos de los fármacos , Músculos/citología , Músculos/efectos de los fármacos , Técnicas de Cultivo de Órganos , Ratas , Retículo Sarcoplasmático/metabolismo
18.
Proc Natl Acad Sci U S A ; 93(15): 8101-6, 1996 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-8755610

RESUMEN

During excitation-contraction (e-c) coupling of striated muscle, depolarization of the surface membrane is converted into Ca2+ release from internal stores. This process occurs at intracellular junctions characterized by a specialized composition and structural organization of membrane proteins. The coordinated arrangement of the two key junctional components--the dihydropyridine receptor (DHPR) in the surface membrane and the ryanodine receptor (RyR) in the sarcoplasmic reticulum--is essential for their normal, tissue-specific function in e-c coupling. The mechanisms involved in the formation of the junctions and a potential participation of DHPRs and RyRs in this process have been subject of intensive studies over the past 5 years. In this review we discuss recent advances in understanding the organization of these molecules in skeletal and cardiac muscle, as well as their concurrent and independent assembly during development of normal and mutant muscle. From this information we derive a model for the assembly of the junctions and the establishment of the precise structural relationship between DHPRs and RyRs that underlies their interaction in e-c coupling.


Asunto(s)
Canales de Calcio/fisiología , Corazón/fisiología , Modelos Biológicos , Contracción Muscular , Músculo Esquelético/fisiología , Contracción Miocárdica , Animales , Calcio/metabolismo , Canales de Calcio Tipo L , Membrana Celular/fisiología , Membranas Intracelulares/fisiología , Proteínas Musculares/fisiología , Canal Liberador de Calcio Receptor de Rianodina , Retículo Sarcoplasmático/fisiología , Transducción de Señal
19.
Dev Biol ; 160(1): 135-47, 1993 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-8224530

RESUMEN

The formation and maintenance of the highly regular organization of membrane systems and proteins in striated muscle require specific membrane-membrane and membrane-cytoskeleton interactions. The development of T-tubules and sarcoplasmic reticulum (SR) was followed in gastrocnemius muscle fibers from chicken embryos between 12 days (E12) and 21 days (E21) of incubation, with particular attention to their relationship with one another and with the myofibrils. The fluorescent lipid analog DiIC16[3] was used to label either the external membranes (plasmalemma and transverse (T)-tubules) or the internal SR in living and fixed muscle. Short membrane invaginations can first be seen in fibers at E14, and at E15 longitudinal T-tubules appear in the periphery of the fibers. A complex network of T-tubules filling the whole fiber diameter develops suddenly at E16. In contrast, SR is abundant at the earliest observed stage (E12) and forms regularly spaced cross striations located at the I-Z-I bands. These correspond to a specific accumulation of smooth membranes around the Z-discs seen in electron micrographs. While SR is specifically associated with the newly formed myofibrils in the periphery of the fibers, the disposition of early T-tubules shows little specific relationship to either SR or the myofibrils. However, electron microscopy shows that junctions between T-tubules and SR are formed during this period (Takekura and Franzini-Armstrong, submitted for publication). Junctions do not acquire a specific relation to the myofibrils until around hatching when triads begin to reorganize into their mature location, the A-I junction. These findings indicate three key events in the organization of T-tubules and SR in the sarcomeres: (1) early SR/Z-line interactions independent of T-tubules; (2) SR/T-tubule interactions to form the triad junctions, independent from the myofibrils; and (3) the late association of the junctional complexes with the myofibrils at the A-I border.


Asunto(s)
Microtúbulos/fisiología , Contracción Muscular/fisiología , Músculos/fisiología , Miofibrillas/fisiología , Retículo Sarcoplasmático/fisiología , Animales , Embrión de Pollo , Electrofisiología , Inmunohistoquímica , Microscopía Electrónica , Músculos/embriología , Músculos/ultraestructura , Sarcómeros/ultraestructura
20.
Gen Comp Endocrinol ; 72(1): 54-62, 1988 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-3053328

RESUMEN

Distribution and association of neurotensin (NT)- and xenopsin (XP)-like peptides were investigated using immunocytochemical techniques in the amphibian gut. Antisera against both groups of peptides showed an identical distribution pattern of NT- and XP-positive cells in Xenopus laevis gastrointestinal tract. Immunolabeling of consecutive semithin sections revealed the coexistence of NT- and XP-like substances within cells of the stomach and small intestine. Recent reports of the colocalization of XP-like material with gastrin in mammalian G cells led us to study the association of NT/XP-like peptides with members of the gastrin/cholecystokinin (CCK)/caerulein (G/C) family in amphibians. The data obtained from immunolabeling serial sections with NT/XP-specific and G/C-specific antisera show that in some intestine NT/XP- and G/C-like peptides do exist in the same cells. In the stomach, however, G/C-like material is confined to endocrine cells of the antral region, while NT/XP-like substances occur in distinct cells accumulating in cardial glands but absent in the pyloric glands. Our findings thus indicate that in amphibian gastrointestinal tract there is some association between the regulatory peptide families NT/XP and G/C, similar to mammals. The regional distribution of both hormone families, however, is different from that in mammals.


Asunto(s)
Sistema Digestivo/análisis , Neuropéptidos/análisis , Proteínas de Xenopus , Animales , Ceruletida/análisis , Colecistoquinina/análisis , Gastrinas/análisis , Técnicas Inmunológicas , Neurotensina/análisis , Oligopéptidos/análisis , Pentagastrina/análisis , Péptidos , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA