Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Dev Biol ; 431(2): 336-346, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28888696

RESUMEN

The organization of cnidarian nerve nets is traditionally described as diffuse with randomly arranged neurites that show minimal reproducibility between animals. However, most observations of nerve nets are conducted using cross-reactive antibodies that broadly label neurons, which potentially masks stereotyped patterns produced by individual neuronal subtypes. Additionally, many cnidarians species have overt structures such as a nerve ring, suggesting higher levels of organization and stereotypy exist, but mechanisms that generated that stereotypy are unknown. We previously demonstrated that NvLWamide-like is expressed in a small subset of the Nematostella nerve net and speculated that observing a few neurons within the developing nerve net would provide a better indication of potential stereotypy. Here we document NvLWamide-like expression more systematically. NvLWamide-like is initially expressed in the typical neurogenic salt and pepper pattern within the ectoderm at the gastrula stage, and expression expands to include endodermal salt and pepper expression at the planula larval stage. Expression persists in both ectoderm and endoderm in adults. We characterized our NvLWamide-like::mCherry transgenic reporter line to visualize neural architecture and found that NvLWamide-like is expressed in six neural subtypes identifiable by neural morphology and location. Upon completing development the numbers of neurons in each neural subtype are minimally variable between animals and the projection patterns of each subtype are consistent. Furthermore, between the juvenile polyp and adult stages the number of neurons for each subtype increases. We conclude that development of the Nematostella nerve net is stereotyped between individuals. Our data also imply that one aspect of generating adult cnidarian nervous systems is to modify the basic structural architecture generated in the juvenile by increasing neural number proportionally with size.


Asunto(s)
Red Nerviosa/embriología , Neuronas/metabolismo , Anémonas de Mar/embriología , Animales , Animales Modificados Genéticamente , Ectodermo/metabolismo , Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Faringe/inervación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Anémonas de Mar/genética , Transgenes
2.
J Mech Behav Biomed Mater ; 151: 106348, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38198930

RESUMEN

The uterus has critical biomechanical functions in pregnancy and undergoes dramatic material growth and remodeling from implantation to parturition. The intrinsic material properties of the human uterus and how they evolve in pregnancy are poorly understood. To address this knowledge gap and assess the heterogeneity of these tissues, the time-dependent material properties of all human uterine layers were measured with nanoindentation. The endometrium-decidua layer was found to be the least stiff, most viscous, and least permeable layer of the human uterus in nonpregnant and third-trimester pregnant tissues. In pregnancy, the endometrium-decidua becomes stiffer and less viscous with no material property changes observed in the myometrium or perimetrium. Additionally, uterine material properties did not significantly differ between third-trimester pregnant tissues with and without placenta accreta. The foundational data generated by this study will facilitate the development of physiologically accurate models of the human uterus to investigate gynecologic and obstetric disorders.


Asunto(s)
Decidua , Placenta , Embarazo , Humanos , Femenino , Útero , Miometrio
3.
J Mech Behav Biomed Mater ; 154: 106509, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518513

RESUMEN

Gelatin methacryloyl (GelMA) hydrogels are widely used for a variety of tissue engineering applications. The properties of gelatin can affect the mechanical properties of gelatin gels; however, the role of gelatin properties such as bloom strength on GelMA hydrogels has not yet been explored. Bloom strength is a food industry standard for describing the quality of gelatin, where higher bloom strength is associated with higher gelatin molecular weight. Here, we evaluate the role of bloom strength on GelMA hydrogel mechanical properties. We determined that both bloom strength of gelatin and weight percent of GelMA influenced both stiffness and viscoelastic ratio; however, only bloom strength affected diffusivity, permeability, and pore size. With this library of GelMA hydrogels of varying properties, we then encapsulated Swan71 trophoblast spheroids in these hydrogel variants to assess how bloom strength affects trophoblast spheroid morphology. Overall, we observed a decreasing trend of spheroid area and Feret diameter as bloom strength increased. In identifying clear relationships between bloom strength, hydrogel mechanical properties, and trophoblast spheroid morphology, we demonstrate that bloom strength should considered when designing tissue engineered constructs.


Asunto(s)
Gelatina , Andamios del Tejido , Hidrogeles , Ingeniería de Tejidos , Metacrilatos
4.
bioRxiv ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38712283

RESUMEN

A successful pregnancy relies on the proper cellular, biochemical, and mechanical functions of the uterus. A comprehensive understanding of uterine mechanical properties during pregnancy is key to understanding different gynecological and obstetric disorders such as preterm birth, placenta accreta, leiomyoma, and endometriosis. This study sought to characterize the macro-scale equilibrium material behaviors of the human uterus in non-pregnancy and late pregnancy under both compressive and tensile loading. Fifty human uterine specimens from 16 patients (8 nonpregnant [NP] and 8 pregnant [PG]) were tested using spherical indentation and uniaxial tension coupled with digital image correlation (DIC). A three-level incremental load-hold protocol was applied to both tests. A microstructurally-inspired material model considering fiber architecture was applied to this dataset. Inverse finite element analysis (IFEA) was then performed to generate a single set of mechanical parameters to describe compressive and tensile behaviors. The freeze-thaw effect on uterine macro mechanical properties was also evaluated. PG tissue exhibits decreased overall stiffness and increased fiber network extensibility compared to NP uterine tissue. Under indentation, ground substance compressibility was similar between NP and PG uterine tissue. In tension, the fiber network of the PG uterus was found to be more extensible and dispersed than in nonpregnancy. Lastly, a single freeze-thaw cycle did not systematically alter the macro-scale material behavior of the human uterus.

5.
Placenta ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39153938

RESUMEN

The leading cause of perinatal mortality is fetal growth restriction (FGR), defined as in utero fetal growth below the 10th percentile. Insufficient exchange of oxygen and nutrients at the maternal-fetal interface is associated with FGR. This transport occurs through the vasculature of the placenta, particularly in the terminal villi, where the vascular membranes have a large surface area and are the thinnest. Altered structure of the placenta villi is thought to contribute to decreased oxygen exchange efficiency, however, understanding how the three-dimensional microstructure and properties decrease this efficiency remains a challenge. Here, a novel, multiscale workflow is presented to quantify patient-specific biophysical properties, 3D structural features, and blood flow of the villous tissue. Namely, nanoindentation, optical coherence tomography, and ultrasound imaging were employed to measure the time-dependent material properties of placenta tissue, the 3D structure of villous tissue, and blood flow through the villi to characterize the microvasculature of the placenta at increasing length scales. Quantifying the biophysical properties, the 3D architecture, and blood flow in the villous tissue can be used to infer changes in maternal-fetal oxygen transport at the villous membrane. Overall, this multiscale understanding will advance knowledge of how microvascular changes in the placenta ultimately lead to FGR, opening opportunities for diagnosis and intervention.

6.
bioRxiv ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38014304

RESUMEN

Gelatin methacryloyl (GelMA) hydrogels are widely used for a variety of tissue engineering applications. The properties of gelatin can affect the mechanical properties of gelatin gels; however, the role of gelatin properties such as bloom strength on GelMA hydrogels has not yet been explored. Bloom strength is a food industry standard for describing the quality of gelatin, where higher bloom strength is associated with higher gelatin molecular weight. Here, we evaluate the role of bloom strength on GelMA hydrogel mechanical properties. We determined that both bloom strength of gelatin and weight percent of GelMA influenced both stiffness and viscoelastic ratio; however, only bloom strength affected diffusivity, permeability, and pore size. With this library of GelMA hydrogels of varying properties, we then encapsulated Swan71 trophoblast spheroids in these hydrogel variants to assess how bloom strength affects trophoblast spheroid morphology. Overall, we observed a decreasing trend of spheroid area and Feret diameter as bloom strength increased. In identifying clear relationships between bloom strength, hydrogel mechanical properties, and trophoblast spheroid morphology, we demonstrate that bloom strength should considered when designing tissue engineered constructs.

7.
bioRxiv ; 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37609213

RESUMEN

The uterus has critical biomechanical functions in pregnancy and undergoes dramatic material growth and remodeling from implantation to parturition. The intrinsic material properties of the human uterus and how they evolve in pregnancy are poorly understood. To address this knowledge gap and assess the heterogeneity of these tissues, the time-dependent material properties of all human uterine layers were measured with nanoindentation. The endometrium-decidua layer was found to be the least stiff, most viscous, and least permeable layer of the human uterus in nonpregnant and third-trimester pregnant tissues. In pregnancy, endometrium-decidua becomes stiffer and less viscous with no material property changes observed in the myometrium or perimetrium. Additionally, uterine material properties did not significantly differ between third-trimester pregnant tissues with and without placenta accreta. The foundational data generated by this study will facilitate the development of physiologically accurate models of the human uterus to investigate gynecologic and obstetric disorders.

8.
Sci Rep ; 13(1): 6305, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072435

RESUMEN

Non-invasive monitoring of atherosclerosis remains challenging. Pulse Wave Imaging (PWI) is a non-invasive technique to measure the local stiffness at diastolic and end-systolic pressures and quantify the hemodynamics. The objective of this study is twofold, namely (1) to investigate the capability of (adaptive) PWI to assess progressive change in local stiffness and homogeneity of the carotid in a high-cholesterol swine model and (2) to assess the ability of PWI to monitor the change in hemodynamics and a corresponding change in stiffness. Nine (n=9) hypercholesterolemic swine were included in this study and followed for up to 9 months. A ligation in the left carotid was used to cause a hemodynamic disturbance. The carotids with detectable hemodynamic disturbance showed a reduction in wall shear stress immediately after ligation (2.12 ± 0.49 to 0.98 ± 0.47 Pa for 40-90% ligation (Group B) and 1.82 ± 0.25 to 0.49 ± 0.46 Pa for >90% ligation (Group C)). Histology revealed subsequent lesion formation after 8-9 months, and the type of lesion formation was dependent on the type of the induced ligation, with more complex plaques observed in the carotids with a more significant ligation (C: >90%). The compliance progression appears differed for groups B and C, with an increase in compliance to 2.09 ± 2.90×10-10 m2 Pa-1 for group C whereas the compliance of group B remained low at 8 months (0.95 ± 0.94×10-10 m2 Pa-1). In summary, PWI appeared capable of monitoring a change in wall shear stress and separating two distinct progression pathways resulting in distinct compliances.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Porcinos , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/patología , Placa Aterosclerótica/diagnóstico por imagen , Arterias Carótidas/diagnóstico por imagen , Arterias Carótidas/patología , Diagnóstico por Imagen , Progresión de la Enfermedad
9.
APL Bioeng ; 7(4): 046103, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37854060

RESUMEN

Atherosclerosis is a primary precursor of cardiovascular disease (CVD), the leading cause of death worldwide. While proprotein convertase subtilisin/kexin 9 (PCSK9) contributes to CVD by degrading low-density lipoprotein receptors (LDLR) and altering lipid metabolism, PCSK9 also influences vascular inflammation, further promoting atherosclerosis. Here, we utilized a vascular microphysiological system to test the effect of PCSK9 activation or repression on the initiation of atherosclerosis and to screen the efficacy of a small molecule PCSK9 inhibitor. We have generated PCSK9 over-expressed (P+) or repressed (P-) human induced pluripotent stem cells (iPSCs) and further differentiated them to smooth muscle cells (viSMCs) or endothelial cells (viECs). Tissue-engineered blood vessels (TEBVs) made from P+ viSMCs and viECs resulted in increased monocyte adhesion compared to the wild type (WT) or P- equivalents when treated with enzyme-modified LDL (eLDL) and TNF-α. We also found significant viEC dysfunction, such as increased secretion of VCAM-1, TNF-α, and IL-6, in P+ viECs treated with eLDL and TNF-α. A small molecule compound, NYX-1492, that was originally designed to block PCSK9 binding with the LDLR was tested in TEBVs to determine its effect on lowering PCSK9-induced inflammation. The compound reduced monocyte adhesion in P+ TEBVs with evidence of lowering secretion of VCAM-1 and TNF-α. These results suggest that PCSK9 inhibition may decrease vascular inflammation in addition to lowering plasma LDL levels, enhancing its anti-atherosclerotic effects, particularly in patients with elevated chronic inflammation.

11.
Biomed Mater ; 13(2): 025005, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29033393

RESUMEN

Tissue regeneration is a significantly improved alternative to tissue replacement by implants. It requires porous bioscaffolds for the restoration of natural tissue rather than relying on bio-inactive, often metallic implants. Recently, we developed technology for fabricating novel, nano-macroporous bioactive 'tailored amorphous multi-porous (TAMP)' hard tissue scaffolds using a 70 mol% SiO2-30 mol% CaO model composition. The TAMP silicate scaffolds, fabricated by a modified sol-gel process, have shown excellent biocompatibility via the rapid formation of hydroxyapatite in biological fluids as well as in early tests with bone forming cells. Here we report an in depth investigation of the response of MC3T3-E1 pre-osteoblast cells and bone marrow derived (BMD) osteoclasts to these TAMP scaffolds. Light and electron microscopic imaging, gene and protein expression, and enzyme activity analyses demonstrate that MC3T3-E1 pre-osteoblasts adhere, proliferate, colonize, and differentiate on and inside the bioactive TAMP scaffolds. Additionally, BMD precursor cells mature into active osteoclasts and remodel the scaffold, highlighting the exceptional qualities of this novel scaffold material for bone tissue regeneration.


Asunto(s)
Materiales Biocompatibles , Regeneración Ósea , Vidrio , Osteoblastos/citología , Osteoclastos/citología , Andamios del Tejido/química , Células 3T3 , Animales , Huesos/patología , Adhesión Celular , Diferenciación Celular , Proliferación Celular , Técnicas de Cocultivo , Durapatita/química , Ratones , Microscopía Electrónica de Rastreo , Modelos Animales , Porosidad , Ratas , Ratas Sprague-Dawley , Silicatos/química , Dióxido de Silicio , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA