RESUMEN
Earth system models and various climate proxy sources indicate global warming is unprecedented during at least the Common Era1. However, tree-ring proxies often estimate temperatures during the Medieval Climate Anomaly (950-1250 CE) that are similar to, or exceed, those recorded for the past century2,3, in contrast to simulation experiments at regional scales4. This not only calls into question the reliability of models and proxies but also contributes to uncertainty in future climate projections5. Here we show that the current climate of the Fennoscandian Peninsula is substantially warmer than that of the medieval period. This highlights the dominant role of anthropogenic forcing in climate warming even at the regional scale, thereby reconciling inconsistencies between reconstructions and model simulations. We used an annually resolved 1,170-year-long tree-ring record that relies exclusively on tracheid anatomical measurements from Pinus sylvestris trees, providing high-fidelity measurements of instrumental temperature variability during the warm season. We therefore call for the construction of more such millennia-long records to further improve our understanding and reduce uncertainties around historical and future climate change at inter-regional and eventually global scales.
Asunto(s)
Cambio Climático , Pinus , Temperatura , Árboles , Cambio Climático/historia , Cambio Climático/estadística & datos numéricos , Calentamiento Global/historia , Calentamiento Global/estadística & datos numéricos , Reproducibilidad de los Resultados , Árboles/anatomía & histología , Árboles/crecimiento & desarrollo , Historia Medieval , Historia del Siglo XXI , Modelos Climáticos , Incertidumbre , Pinus/anatomía & histología , Pinus/crecimiento & desarrollo , InternacionalidadRESUMEN
OBJECTIVE: This study aims to establish an accurate and robust imaging biomarker for pre-clinical osteoarthritis (OA) research, focusing on early detection of cartilage surface degeneration. METHOD: Using 50 male Wistar rats, this study aims to observe Collagenase-induced OA (CIOA) progression through microcomputed x-ray tomography (µCT), histopathological analysis, and gait analysis. A novel parameter, Cartilage Roughness Score (CRS), was developed for assessing cartilage structural damage from µCT data and was compared with histological OARSI Cartilage Degeneration Score (OARSI CDS). Additionally, as CRS maps the full surface, it was used to simulate the level of uncertainty in histological sampling. RESULTS: CRS and OARSI CDS have a linear relationship. CRS for healthy cartilage is 2.75 (95% CI: 1.14-4.36), and with every 1 unit increase in OARSI, CRS is expected to increase by 0.64 (95% CI: 0.35-0.92). Cartilage degeneration due to CIOA was evident in both histopathological scoring and CRS. However, only CRS was sensitive enough to show consistent damage progression from day 10 to day 60. Furthermore, our simulation for histological sampling suggested that up to 16 coronal slices with 200 µm spacing would be needed to accurately represent the full extent of cartilage surface degeneration in a slice-wise manner. Gait analysis showed changes solely at eight days post-collagenase injection, normalizing by day 60. CONCLUSION: The CRS analysis method emerges as a robust tool for cartilage surface damage assessment. This study demonstrates the potential of automatic 3D analysis over the traditional 2D histological approach when evaluating cartilage surface damage.
RESUMEN
Emerging diseases caused by both native and exotic pathogens represent a main threat to forest ecosystems worldwide. The two invasive soilborne pathogens Phytophthora cinnamomi and Phytophthora × cambivora are the causal agents of ink disease, which has been threatening Castanea sativa in Europe for several centuries and seems to be re-emerging in recent years. Here, we investigated the distribution, causal agents, and infection dynamics of ink disease in southern Switzerland. A total of 25 outbreaks were identified, 19 with only P. cinnamomi, 5 with only P. × cambivora, and 1 with both species. Dendrochronological analyses showed that the disease emerged in the last 20-30 years. Infected trees either died rapidly within 5-15 years post-infection or showed a prolonged state of general decline until death. Based on a generalized linear model, the local risk of occurrence of ink disease was increased by an S-SE aspect of the chestnut stand, the presence of a pure chestnut stand, management activities, the proximity of roads and buildings, and increasing annual mean temperature and precipitation. The genetic structure of the local P. cinnamomi population suggests independent introductions and local spread of the pathogen.
Asunto(s)
Fagaceae , Phytophthora , Suiza , Ecosistema , Tinta , Europa (Continente) , Phytophthora/genética , Fagaceae/genéticaRESUMEN
Trees remain sufficiently hydrated during drought by closing stomata and reducing canopy conductance (Gc ) in response to variations in atmospheric water demand and soil water availability. Thresholds that control the reduction of Gc are proposed to optimize hydraulic safety against carbon assimilation efficiency. However, the link between Gc and the ability of stem tissues to rehydrate at night remains unclear. We investigated whether species-specific Gc responses aim to prevent branch embolisms, or enable night-time stem rehydration, which is critical for turgor-dependent growth. For this, we used a unique combination of concurrent dendrometer, sap flow and leaf water potential measurements and collected branch-vulnerability curves of six common European tree species. Species-specific Gc reduction was weakly related to the water potentials at which 50% of branch xylem conductivity is lost (P50 ). Instead, we found a stronger relationship with stem rehydration. Species with a stronger Gc control were less effective at refilling stem-water storage as the soil dries, which appeared related to their xylem architecture. Our findings highlight the importance of stem rehydration for water-use regulation in mature trees, which likely relates to the maintenance of adequate stem turgor. We thus conclude that stem rehydration must complement the widely accepted safety-efficiency stomatal control paradigm.
Asunto(s)
Hojas de la Planta , Árboles , Árboles/fisiología , Hojas de la Planta/fisiología , Xilema/fisiología , Agua/fisiología , Sequías , FluidoterapiaRESUMEN
Wood formation determines major long-term carbon (C) accumulation in trees and therefore provides a crucial ecosystem service in mitigating climate change. Nevertheless, we lack understanding of how species with contrasting wood anatomical types differ with respect to phenology and environmental controls on wood formation. In this study, we investigated the seasonality and rates of radial growth and their relationships with climatic factors, and the seasonal variations of stem nonstructural carbohydrates (NSC) in three species with contrasting wood anatomical types (red oak: ring-porous; red maple: diffuse-porous; white pine: coniferous) in a temperate mixed forest during 2017-2019. We found that the high ring width variability observed in both red oak and red maple was caused more by changes in growth duration than growth rate. Seasonal radial growth patterns did not vary following transient environmental factors for all three species. Both angiosperm species showed higher concentrations and lower inter-annual fluctuations of NSC than the coniferous species. Inter-annual variability of ring width varied by species with contrasting wood anatomical types. Due to the high dependence of annual ring width on growth duration, our study highlights the critical importance of xylem formation phenology for understanding and modelling the dynamics of wood formation.
Asunto(s)
Pinus , Quercus , Tracheophyta , Carbohidratos , Ecosistema , Estaciones del Año , Madera , XilemaRESUMEN
Whether sources or sinks control wood growth remains debated with a paucity of evidence from mature trees in natural settings. Here, we altered carbon supply rate in stems of mature red maples (Acer rubrum) within the growing season by restricting phloem transport using stem chilling; thereby increasing carbon supply above and decreasing carbon supply below the restrictions, respectively. Chilling successfully altered nonstructural carbon (NSC) concentrations in the phloem without detectable repercussions on bulk NSC in stems and roots. Ring width responded strongly to local variations in carbon supply with up to seven-fold differences along the stem of chilled trees; however, concurrent changes in the structural carbon were inconclusive at high carbon supply due to large local variability of wood growth. Above chilling-induced bottlenecks, we also observed higher leaf NSC concentrations, reduced photosynthetic capacity, and earlier leaf coloration and fall. Our results indicate that the cambial sink is affected by carbon supply, but within-tree feedbacks can downregulate source activity, when carbon supply exceeds demand. Such feedbacks have only been hypothesized in mature trees. Consequently, these findings constitute an important advance in understanding source-sink dynamics, suggesting that mature red maples operate close to both source- and sink-limitation in the early growing season.
Asunto(s)
Acer , Madera/fisiología , Fotosíntesis , Árboles/fisiología , Carbono/análisis , Hojas de la Planta/fisiologíaRESUMEN
How variations in carbon supply affect wood formation remains poorly understood in particular in mature forest trees. To elucidate how carbon supply affects carbon allocation and wood formation, we attempted to manipulate carbon supply to the cambial region by phloem girdling and compression during the mid- and late-growing season and measured effects on structural development, CO2 efflux and nonstructural carbon reserves in stems of mature white pines. Wood formation and stem CO2 efflux varied with a location relative to treatment (i.e., above or below the restriction). We observed up to twice as many tracheids formed above versus below the treatment after the phloem transport manipulation, whereas the cell-wall area decreased only slightly below the treatments, and cell size did not change relative to the control. Nonstructural carbon reserves in the xylem, needles and roots were largely unaffected by the treatments. Our results suggest that low and high carbon supply affects wood formation, primarily through a strong effect on cell proliferation, and respiration, but local nonstructural carbon concentrations appear to be maintained homeostatically. This contrasts with reports of decoupling of source activity and wood formation at the whole-tree or ecosystem level, highlighting the need to better understand organ-specific responses, within-tree feedbacks, as well as phenological and ontogenetic effects on sink-source dynamics.
Asunto(s)
Carbono/metabolismo , Floema/metabolismo , Pinus/crecimiento & desarrollo , Pinus/metabolismo , Madera/crecimiento & desarrollo , Transporte Biológico , Dióxido de Carbono/metabolismo , Pared Celular/metabolismo , Massachusetts , Células Vegetales/metabolismo , Raíces de Plantas/metabolismo , Tallos de la Planta/metabolismo , Madera/metabolismo , Xilema/metabolismoRESUMEN
The hydraulic properties of xylem determine the ability of plants to efficiently and safely provide water to their leaves. These properties are key to understanding plant responses to environmental conditions and evaluating their fate under a rapidly changing climate. However, their assessment is hindered by the challenges of quantifying basic hydraulic components such as bordered pits and tracheids. Here, we use isometric scaling between tracheids and pit morphology to merge partial hydraulic models of the tracheid component and to upscale these properties to the tree-ring level in conifers. Our new model output is first cross-validated with the literature and then applied to cell anatomical measurements from Larix sibirica tree rings formed under harsh conditions in southern Siberia to quantify the intra- and inter-annual variability in hydraulic properties. The model provides a means of assessing how different-sized tracheid components contribute to the hydraulic properties of the ring. Upscaled results indicate that natural inter- and intra-ring anatomical variations have a substantial impact on the tree's hydraulic properties. Our model facilitates the assessment of important xylem functional attributes because it requires only the more accessible measures of cross-sectional tracheid size. This approach, if applied to dated tree rings, provides a novel way to investigate xylem structure-function relationships across time and environmental conditions.
Asunto(s)
Tracheophyta , Clima , Estudios Transversales , Agua , XilemaRESUMEN
As major terrestrial carbon sinks, forests play an important role in mitigating climate change. The relationship between the seasonal uptake of carbon and its allocation to woody biomass remains poorly understood, leaving a significant gap in our capacity to predict carbon sequestration by forests. Here, we compare the intra-annual dynamics of carbon fluxes and wood formation across the Northern hemisphere, from carbon assimilation and the formation of non-structural carbon compounds to their incorporation in woody tissues. We show temporally coupled seasonal peaks of carbon assimilation (GPP) and wood cell differentiation, while the two processes are substantially decoupled during off-peak periods. Peaks of cambial activity occur substantially earlier compared to GPP, suggesting the buffer role of non-structural carbohydrates between the processes of carbon assimilation and allocation to wood. Our findings suggest that high-resolution seasonal data of ecosystem carbon fluxes, wood formation and the associated physiological processes may reduce uncertainties in carbon source-sink relationships at different spatial scales, from stand to ecosystem levels.
Asunto(s)
Secuestro de Carbono , Carbono , Cambio Climático , Bosques , Estaciones del Año , Tracheophyta , Madera , Carbono/metabolismo , Madera/metabolismo , Madera/química , Tracheophyta/metabolismo , Biomasa , Ecosistema , Ciclo del Carbono , Árboles/metabolismoRESUMEN
Boreal regions are changing rapidly with anthropogenic global warming. In order to assess risks and impacts of this process, it is crucial to put these observed changes into a long-term perspective. Summer air temperature variability can be well reconstructed from conifer tree rings. While the application of stable isotopes can potentially provide complementary climatic information over different seasons. In this study, we developed new triple stable isotope chronologies in tree-ring cellulose (δ13Ctrc, δ18Otrc, δ2Htrc) from a study site in Canada. Additionally, we performed regional aggregated analysis of available stable isotope chronologies from 6 conifers' tree species across high-latitudinal (HL) and - altitudinal (HA) as well as Siberian (SIB) transects of the Northern Hemispheric boreal zone. Our results show that summer air temperature still plays an important role in determining tree-ring isotope variability at 11 out of 24 sites for δ13Ctrc, 6 out of 18 sites for δ18Otrc and 1 out of 6 sites for δ2Htrc. Precipitation, relative humidity and vapor pressure deficit are significantly and consistently recorded in both δ13Ctrc and δ18Otrc along HL. Summer sunshine duration is captured by all isotopes, mainly for HL and HA transects, indicating an indirect link with an increase in air and leaf temperature. A mixed temperature-precipitation signal is preserved in δ13Ctrc and δ18Otrc along SIB transect. The δ2Htrc data obtained for HL-transect provide information not only about growing seasonal moisture and temperature, but also capture autumn, winter and spring sunshine duration signals. We conclude that a combination of triple stable isotopes in tree-ring studies can provide a comprehensive description of climate variability across the boreal forest zone and improve ecohydrological reconstructions.
RESUMEN
Climate change projections forecast most significant impacts on high-latitude forest ecosystems. Particularly, climate warming in boreal regions should increase fire severity and shorten its return interval. These processes can change the dynamics of boreal forests as younger stands become more dominating with a shift from gymnosperm to angiosperm. However, despite angiosperm's phenological and physiological traits have a high potential for ecophysiological and dendroclimatological studies in Siberia, they have been rarely investigated due to their short-term lifespan in comparison with gymnosperm. Modeling tree growth is a common way to understand tree growth responses to environmental changes since it allows using available experiment or field data to interpret observed climate-growth relationships based on the biological principles. In our study, we applied the process-based Vaganov-Shashkin (VS) model of tree-ring growth via a parameterization approach VS-oscilloscope for the first time to an angiosperm tree species (Betula pubescens Ehrh.) from continuous permafrost terrain to understand its tree-radial growth dynamic. The parameterization of the VS model provided highly significant positive correlations (p < 0.05) between the simulated growth curve and initial tree-ring chronologies for the period 1971-2011 and displayed the average duration of the growing season and intra-seasonal key limiting factors for xylem formation. Modeled result can be valid at the regional scale for remote birch stands, whereas, justification of the local non-climatic input data of the model provided precise site-specific tree growth dynamic and their substantiated responses to driving factors.
RESUMEN
Temperature and precipitation changes are crucial for larch trees growing at high-elevation sites covered by permafrost in the Altai-Sayan mountain range (ASMR). To contextualize the amplitude of recent climate fluctuations, we have to look into the past by analyzing millennial paleoclimatic archives recording both temperature and precipitation. We developed annually resolved 1500-year tree-ring cellulose chronologies (δ13Ccell, δ18Ocell), and used these new records to reconstruct the variability in local summer precipitation and air temperature. We combined our new local reconstructions with existing paleoclimatic archives available for the Altai. The data show a strong decreasing trend by ca. 49% in regional summer precipitation, along with a regional summer temperature increase towards the twenty-first century, relative to the preceding 1500 years. Modern dry conditions (1966-2016 CE) in the ASMR are the result of simultaneous summer warming and decreased precipitation. Our new reconstructions also demonstrate that climate change in the ASMR is much stronger compared to the global average.
Asunto(s)
Larix , Hielos Perennes , Cambio Climático , Bosques , Temperatura , ÁrbolesRESUMEN
Rapid changes in the hydrological and temperature regimes over the past decades at the northern latitudes enhance significantly permafrost degradation accelerating carbon release, increase the frequency of drought events and extensive wildfires. However, the mechanisms and dynamics driving drought events and their influence on Siberian forests are currently the subject of numerous research activities. Newly developed and annually resolved stable carbon and oxygen isotope chronologies of larch tree-ring cellulose (δ13Ccell and δ18Ocell) for the period 516-2009 CE allowed the reconstruction of July precipitation and Arctic Oscillation (AO) in May, respectively. Unprecedented drought events occurred towards twentieth-twenty-first centuries as indicated by the July precipitation reconstruction. Positive AO phases in May were most pronounced during the second part of the first millennium, but also increased in frequency in the modern period of the twentieth-twenty-first centuries. Negative AO phases are associated with cold anomalies and show a remarkable decrease in the nineteenth century caused by a series of major volcanic eruptions. Our findings help explaining the increased frequency of Siberian forest fires over the past decades in Central Siberia consistent with a reduction of summer precipitation, triggered by a positive phase of the Arctic Oscillation in May.
RESUMEN
Insect defoliation impacts forest productivity worldwide, highlighting the relevance of plant-insect interactions. The larch budmoth (Zeiraphera griseana Hübner) is one of the most extensively studied defoliators, where numerous tree ring-based analyses on its host (Larix decidua Mill.) have aided in identifying outbreak dynamics over the past millennia. Yet, outbreaks have been widely absent after the early 1980s, and little is known about the in situ tree physiological responses and the allocation of carbon resources during and after defoliation. In summer 2018, we tracked an ongoing larch budmoth outbreak in a well-studied larch forest in the Swiss Alps. We performed biweekly monitoring on an affected and unaffected site using a unique combination of xylogenesis observations, measurements of non-structural carbohydrates, isotopic analysis of needle assimilates and ground-based and remote-sensed leaf trait observations. The budmoth induced a defoliation that lasted 40 days and could be detected by satellite observations. Soluble sugars significantly decreased in needles and stem phloem of the defoliated trees, while starch levels remained stable in the stem and root xylem compared to the control. Carbon and oxygen isotope ratios in needle assimilates indicated that neither photosynthetic assimilation rates nor stomatal conductance was different between sites before, during and after the outbreak. Defoliated trees ceased cell wall thickening 17 days earlier than unaffected trees, showing the earliest halt of ring formation recorded from 2007 untill 2013 and causing significant thinner cell walls, particularly in the latewood. No significant differences were found for cell enlargement rates and ring width. Our study revealed that an outbreak causes a downregulation of cell wall thickening first, while no starch is mobilized or leaf physiology is adjusted to compensate for the reduced carbon source due to defoliation. Our observations suggest that affected larch trees prioritize leaf recovery and carbon storage over wood biomass development.
Asunto(s)
Larix , Animales , Carbono , Brotes de Enfermedades , Monitoreo Fisiológico , Hojas de la Planta , Árboles , MaderaRESUMEN
Elevated CO2 along with rising temperature and water deficits can lead to changes in tree physiology and leaf biochemistry. These changes can increase heat- and drought-induced tree mortality. We aim to reveal the impacts of climatic drivers on individual compounds at the leaf level among European larch (Larix decidua) and mountain pine (Pinus mugo) trees, which are widely distributed at high elevations. We investigated seasonal carbon isotope composition (δ13C) and concentration patterns of carbohydrates and organic acids in needles of these two different species from a case study in the Swiss National Park (SNP). We found that average and minimum air temperatures were the main climatic drivers of seasonal variation of δ13C in sucrose and glucose as well as in concentrations of carbohydrates and citric acid/citrate in needles of both tree species. The impact of seasonal climatic drivers on larch and mountain pine trees at the needle level is in line with our earlier study in this region for long-term changes at the tree-ring level. We conclude that the species-specific changes in δ13C and concentrations of carbohydrates and organic acids are sensitive indicators of changes in the metabolic pathways occurring as a result of climatic changes.
Asunto(s)
Isótopos de Carbono/análisis , Pinus/metabolismo , Cambio Climático , Parques Recreativos , Árboles/metabolismoRESUMEN
Wood formation allows trees to adjust in a changing climate. Understanding what determine its adjustment is crucial to evaluate impacts of climatic changes on trees and forests growth. Despite efforts to characterize wood formation, little is known on its impact on the xylem cellular structure. In this study we apply the Vaganov-Shashkin model to generate synthetic tracheidograms and verify its use to investigate the formation of intra-annual density fluctuations (IADF), one of the most frequent climate tree-ring markers in drought-exposed sites. Results indicate that the model can produce realistic tracheidograms, except for narrow rings (<1 mm), when cambial activity stops due to an excess of drought or a lack of growth vigor. These observations suggest that IADFs are caused by a release of drought limitation to cells formation in the first half of the growing season, but that narrow rings are indicators of an even more extreme and persistent water stress. Taking the example of IADFs formation, this study demonstrated that the Vaganov-Shashkin model is a useful tool to study the climatic impact on tree-ring structures. The ability to produce synthetic tracheidogram represents an unavoidable step to link climate to tree growth and xylem functioning under future scenarios.