Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 19(2): e1010651, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36848397

RESUMEN

Hundreds of genetic variants implicated in Mendelian disease have been characterized in dogs and commercial screening is being offered for most of them worldwide. There is typically limited information available regarding the broader population frequency of variants and uncertainty regarding their functional and clinical impact in ancestry backgrounds beyond the discovery breed. Genetic panel screening of disease-associated variants, commercially offered directly to the consumer or via a veterinary clinician, provides an opportunity to establish large-scale cohorts with phenotype data available to address open questions related to variant prevalence and relevance. We screened the largest canine cohort examined in a single study to date (1,054,293 representative dogs from our existing cohort of 3.5 million; a total of 811,628 mixed breed dogs and 242,665 purebreds from more than 150 countries) to examine the prevalence and distribution of a total of 250 genetic disease-associated variants in the general population. Electronic medical records from veterinary clinics were available for 43.5% of the genotyped dogs, enabling the clinical impact of variants to be investigated. We provide detailed frequencies for all tested variants across breeds and find that 57% of dogs carry at least one copy of a studied Mendelian disease-associated variant. Focusing on a subset of variants, we provide evidence of full penetrance for 10 variants, and plausible evidence for clinical significance of 22 variants, on diverse breed backgrounds. Specifically, we report that inherited hypocatalasia is a notable oral health condition, confirm that factor VII deficiency presents as subclinical bleeding propensity and verify two genetic causes of reduced leg length. We further assess genome-wide heterozygosity levels in over 100 breeds, and show that a reduction in genome-wide heterozygosity is associated with an increased Mendelian disease variant load. The accumulated knowledge represents a resource to guide discussions on genetic test relevance by breed.


Asunto(s)
Relevancia Clínica , Pruebas Genéticas , Perros , Humanos , Animales , Prevalencia , Frecuencia de los Genes , Fenotipo
2.
PLoS Genet ; 18(6): e1009804, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35709088

RESUMEN

In the largest DNA-based study of domestic cats to date, 11,036 individuals (10,419 pedigreed cats and 617 non-pedigreed cats) were genotyped via commercial panel testing elucidating the distribution and frequency of known disease, blood type, and physical trait associated genetic variants across cat breeds. This study provides allele frequencies for many disease-associated variants for the first time and provides updates on previously reported information with evidence suggesting that DNA testing has been effectively used to reduce disease associated variants within certain pedigreed cat populations over time. We identified 13 disease-associated variants in 47 breeds or breed types in which the variant had not previously been documented, highlighting the relevance of comprehensive genetic screening across breeds. Three disease-associated variants were discovered in non-pedigreed cats only. To investigate the causality of nine disease-associated variants in cats of different breed backgrounds our veterinarians conducted owner interviews, reviewed clinical records, and invited cats to have follow-up clinical examinations. Additionally, genetic variants determining blood types A, B and AB, which are relevant clinically and in cat breeding, were genotyped. Appearance-associated genetic variation in all cats is also discussed. Lastly, genome-wide SNP heterozygosity levels were calculated to obtain a comparable measure of the genetic diversity in different cat breeds. This study represents the first comprehensive exploration of informative Mendelian variants in felines by screening over 10,000 pedigreed cats. The results qualitatively contribute to the understanding of feline variant heritage and genetic diversity and demonstrate the clinical utility and importance of such information in supporting breeding programs and the research community. The work also highlights the crucial commitment of pedigreed cat breeders and registries in supporting the establishment of large genomic databases, that when combined with phenotype information can advance scientific understanding and provide insights that can be applied to improve the health and welfare of cats.


Asunto(s)
Variación Genética , Genoma , Animales , Gatos/genética , Frecuencia de los Genes , Genoma/genética , Epidemiología Molecular , Fenotipo
3.
Anim Genet ; 55(4): 676-680, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38721753

RESUMEN

Cats with a distinctive white hair pattern of unknown molecular cause have been discovered in the Finnish domestic cat population. Based on the unique appearance of these cats, we have named this phenotype salmiak ("salty licorice"). The use of a commercially available panel test to genotype four salmiak-colored cats revealed the absence of all known variants associated with white-haired phenotypic loci: full White (W), Spotting (Ws) and the Birman white Gloves associated (wg) allele of the KIT proto-oncogene (KIT) gene. Whole-genome sequencing on two salmiak-colored cats was conducted to search for candidate causal variants in the KIT gene. Despite a lack of coding variants, visual inspection of the short read alignments revealed a large ~95 kb deletion located ~65 kb downstream of the KIT gene in the salmiak cats. Additional PCR genotyping of 180 domestic cats and three salmiak-colored cats confirmed the homozygous derived variant genotype fully concordant with the salmiak phenotype. We suggest the newly identified variant be designated as wsal for "w salmiak".


Asunto(s)
Color del Cabello , Proteínas Proto-Oncogénicas c-kit , Animales , Gatos/genética , Color del Cabello/genética , Proteínas Proto-Oncogénicas c-kit/genética , Fenotipo , Eliminación de Secuencia , Finlandia , Genotipo , Secuenciación Completa del Genoma/veterinaria
4.
Hum Genet ; 142(8): 1221-1230, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37222814

RESUMEN

Hereditary hyperekplexia is a rare neuronal disorder characterized by an exaggerated startle response to sudden tactile or acoustic stimuli. In this study, we present a Miniature Australian Shepherd family showing clinical signs, which have genetic and phenotypic similarities with human hereditary hyperekplexia: episodes of muscle stiffness that could occasionally be triggered by acoustic stimuli. Whole genome sequence data analysis of two affected dogs revealed a 36-bp deletion spanning the exon-intron boundary in the glycine receptor alpha 1 (GLRA1) gene. Further validation in pedigree samples and an additional cohort of 127 Miniature Australian Shepherds, 45 Miniature American Shepherds and 74 Australian Shepherds demonstrated complete segregation of the variant with the disease, according to an autosomal recessive inheritance pattern. The protein encoded by GLRA1 is a subunit of the glycine receptor, which mediates postsynaptic inhibition in the brain stem and spinal cord. The canine GLRA1 deletion is located in the signal peptide and is predicted to cause exon skipping and subsequent premature stop codon resulting in a significant defect in glycine signaling. Variants in GLRA1 are known to cause hereditary hyperekplexia in humans; however, this is the first study to associate a variant in canine GLRA1 with the disorder, establishing a spontaneous large animal disease model for the human condition.


Asunto(s)
Hiperekplexia , Síndrome de la Persona Rígida , Humanos , Perros , Animales , Hiperekplexia/genética , Síndrome de la Persona Rígida/genética , Síndrome de la Persona Rígida/veterinaria , Receptores de Glicina/genética , Australia
6.
PLoS Genet ; 14(4): e1007361, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29708978

RESUMEN

Knowledge on the genetic epidemiology of disorders in the dog population has implications for both veterinary medicine and sustainable breeding. Limited data on frequencies of genetic disease variants across breeds exists, and the disease heritage of mixed breed dogs remains poorly explored to date. Advances in genetic screening technologies now enable comprehensive investigations of the canine disease heritage, and generate health-related big data that can be turned into action. We pursued population screening of genetic variants implicated in Mendelian disorders in the largest canine study sample examined to date by examining over 83,000 mixed breed and 18,000 purebred dogs representing 330 breeds for 152 known variants using a custom-designed beadchip microarray. We further announce the creation of MyBreedData (www.mybreeddata.com), an online updated inherited disorder prevalence resource with its foundation in the generated data. We identified the most prevalent, and rare, disease susceptibility variants across the general dog population while providing the first extensive snapshot of the mixed breed disease heritage. Approximately two in five dogs carried at least one copy of a tested disease variant. Most disease variants are shared by both mixed breeds and purebreds, while breed- or line-specificity of others is strongly suggested. Mixed breed dogs were more likely to carry a common recessive disease, whereas purebreds were more likely to be genetically affected with one, providing DNA-based evidence for hybrid vigor. We discovered genetic presence of 22 disease variants in at least one additional breed in which they were previously undescribed. Some mutations likely manifest similarly independently of breed background; however, we emphasize the need for follow up investigations in each case and provide a suggested validation protocol for broader consideration. In conclusion, our study provides unique insight into genetic epidemiology of canine disease risk variants, and their relevance for veterinary medicine, breeding programs and animal welfare.


Asunto(s)
Enfermedades de los Perros/genética , Perros/genética , Animales , Cruzamiento , Bases de Datos Genéticas , Enfermedades de los Perros/epidemiología , Femenino , Frecuencia de los Genes , Genes Recesivos , Predisposición Genética a la Enfermedad , Pruebas Genéticas/veterinaria , Variación Genética , Vigor Híbrido , Masculino , Epidemiología Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos/veterinaria , Prevalencia , Especificidad de la Especie
7.
BMC Genomics ; 18(1): 426, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28569133

RESUMEN

BACKGROUND: Utilising next generation sequencing to interrogate saturated bacterial mutant libraries provides unprecedented information for the assignment of genome-wide gene essentiality. Exposure of saturated mutant libraries to specific conditions and subsequent sequencing can be exploited to uncover gene essentiality relevant to the condition. Here we present a barcoded transposon directed insertion-site sequencing (TraDIS) system to define an essential gene list for Streptococcus equi subsp. equi, the causative agent of strangles in horses, for the first time. The gene essentiality data for this group C Streptococcus was compared to that of group A and B streptococci. RESULTS: Six barcoded variants of pGh9:ISS1 were designed and used to generate mutant libraries containing between 33,000-66,000 unique mutants. TraDIS was performed on DNA extracted from each library and data were analysed separately and as a combined master pool. Gene essentiality determined that 19.5% of the S. equi genome was essential. Gene essentialities were compared to those of group A and group B streptococci, identifying concordances of 90.2% and 89.4%, respectively and an overall concordance of 83.7% between the three species. CONCLUSIONS: The use of barcoded pGh9:ISS1 to generate mutant libraries provides a highly useful tool for the assignment of gene function in S. equi and other streptococci. The shared essential gene set of group A, B and C streptococci provides further evidence of the close genetic relationships between these important pathogenic bacteria. Therefore, the ABC of gene essentiality reported here provides a solid foundation towards reporting the functional genome of streptococci.


Asunto(s)
Genes Bacterianos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Streptococcus/genética , Genes Esenciales/genética , Genómica , Mutación
8.
Mamm Genome ; 27(5-6): 237-45, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27017229

RESUMEN

Retinal degeneration (RD) in the Miniature Long Haired Dachshund (MLHD) is a cone-rod dystrophy resulting in eventual blindness in affected individuals. In a previous study, a 44-nucleotide insertion (ins44) in exon 2 of RPGRIP1 was associated with RD. However, results on an extended population of MLHD revealed a variable RD onset age for ins44 homozygous dogs. Further investigations using a genome-wide association study comparing early onset and late onset RD cases identified an age of onset modifying locus for RD, approximately 30 Mb upstream of RPGRIP1 on chr15. In this investigation, target enriched sequencing identified a MAP9 deletion spanning approximately 22 kb associated with early RD onset. Identification of the deletion required correction to the CanFam3.1 genome build as canine MAP9 is part of a historic tandem duplication, resulting in incomplete assembly of this genome region. The deletion breakpoints were identified in MAP9 intron 10 and in a downstream partial MAP9 pseudogene. The fusion of these two genes, which we have called MAP9 EORD (microtubule-associated protein, early onset retinal degeneration), is in frame and is expressed at the RNA level, with the 3' region containing several predicted deleterious variants. We speculate that MAP9 associates with α-tubulin in the basal body of the cilium. RPGRIP1 is also known to locate to the cilium, where it is closely associated with RPGR. RPGRIP1 mutations also cause redistribution of α-tubulin away from the ciliary region in photoreceptors. Hence, a MAP9 partial deficit is a particularly attractive candidate to synergise with a partial RPGRIP1 deficit to cause a more serious disease.


Asunto(s)
Enfermedades de los Perros/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas/genética , Degeneración Retiniana/genética , Animales , Proteínas del Citoesqueleto , Enfermedades de los Perros/patología , Perros , Exones/genética , Genoma , Estudio de Asociación del Genoma Completo , Homocigoto , Humanos , Anotación de Secuencia Molecular , Mutación , Linaje , Degeneración Retiniana/patología , Eliminación de Secuencia/genética
9.
BMC Genet ; 17(1): 123, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27566131

RESUMEN

BACKGROUND: Cerebellar cortical degeneration (CCD) is an increasingly recognised neurodegenerative disease process affecting many dog breeds. Typical presentation consists of a progressive cerebellar ataxia, with a variable age at onset and rate of progression between different breeds. Cerebellar histopathological findings typically consist of primary Purkinje neuronal degeneration and loss, with variable secondary depletion of the granular and molecular cell layers. Causative genes have been identified associated with CCD in several breeds, allowing screening for selective breeding to reduce the prevalence of these conditions. There have been no previous reports of CCD in Hungarian Vizslas. RESULTS: Two full-sibling Hungarian Vizsla puppies from a litter of nine presented with a history of progressive ataxia, starting around three months of age. Clinical signs included marked hypermetric and dysmetric ataxia, truncal sway, intention tremors and absent menace responses, with positional horizontal nystagmus in one dog. Routine diagnostic investigations were unremarkable, and magnetic resonance imaging performed in one dog revealed mild craniodorsal cerebellar sulci widening, supportive of cerebellar atrophy. Owners of both dogs elected for euthanasia shortly after the onset of signs. Histopathological examination revealed primary Purkinje neuron loss consistent with CCD. Whole genome sequencing was used to successfully identify a disease-associated splice donor site variant in the sorting nexin 14 gene (SNX14) as a strong causative candidate. An altered SNX14 splicing pattern for a CCD case was demonstrated by RNA analysis, and no SNX14 protein could be detected in CCD case cerebellum by western blotting. SNX14 is involved in maintaining normal neuronal excitability and synaptic transmission, and a mutation has recently been found to cause autosomal recessive cerebellar ataxia and intellectual disability syndrome in humans. Genetic screening of 133 unaffected Hungarian Vizslas revealed the presence of three heterozygotes, supporting the presence of carriers in the wider population. CONCLUSIONS: This is the first report of CCD in Hungarian Vizsla dogs and identifies a highly associated splice donor site mutation in SNX14, with an autosomal recessive mode of inheritance suspected.


Asunto(s)
Enfermedades Cerebelosas/veterinaria , Enfermedades de los Perros/genética , Genómica , Mutación , Sitios de Empalme de ARN/genética , Análisis de Secuencia , Nexinas de Clasificación/genética , Animales , Enfermedades Cerebelosas/genética , Perros , Femenino , Masculino
10.
Mamm Genome ; 26(1-2): 108-17, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25354648

RESUMEN

Spinocerebellar ataxia in the Italian Spinone dog breed is characterised by a progressive gait abnormality that manifests from approximately 4 months of age. The disorder shows an autosomal recessive mode of inheritance, and affected individuals are usually euthanized by one year of age on welfare grounds due to an inability to ambulate. Using a homozygosity mapping technique with six cases and six controls, we mapped the disease locus to chromosome 20 of the canine genome. Linkage analysis across an extended pedigree confirmed the association, with microsatellite C20.374 achieving a maximal LOD score of 4.41. All five genes within the disease-associated interval were exon resequenced, although no exonic candidate mutations were identified. A targeted resequencing approach was therefore adopted to sequence the entire disease-associated interval. Analysis of the sequencing data revealed a GAA repeat expansion in intron 35 of ITPR1, which was homozygous in all cases and heterozygous in obligate carriers. Partial impairment of cerebellar ITPR1 expression in affected dogs was demonstrated by immunohistochemistry. Given the association of ITPR1 mutations with spinocerebellar ataxia (SCA) type 15 (also designated SCA16) in humans and that an intronic GAA repeat expansion has been shown to cause Friedreich ataxia, the repeat expansion is an excellent candidate for the cause of spinocerebellar ataxia in the Italian Spinone. This finding represents the first naturally occurring pathogenic intronic GAA repeat expansion in a non-human species and a novel mechanism for ITPR1 associated spinocerebellar ataxia.


Asunto(s)
Enfermedades de los Perros/genética , Enfermedades de los Perros/patología , Receptores de Inositol 1,4,5-Trifosfato/genética , Ataxias Espinocerebelosas/veterinaria , Expansión de Repetición de Trinucleótido/genética , Animales , Secuencia de Bases , Mapeo Cromosómico , Cartilla de ADN/genética , Perros , Genes Recesivos/genética , Inmunohistoquímica , Italia , Escala de Lod , Datos de Secuencia Molecular , Linaje , Análisis de Secuencia de ADN , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología
11.
PLoS Genet ; 8(1): e1002462, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22253609

RESUMEN

The domestic dog (Canis familiaris) segregates more naturally-occurring diseases and phenotypic variation than any other species and has become established as an unparalled model with which to study the genetics of inherited traits. We used a genome-wide association study (GWAS) and targeted resequencing of DNA from just five dogs to simultaneously map and identify mutations for two distinct inherited disorders that both affect a single breed, the Cavalier King Charles Spaniel. We investigated episodic falling (EF), a paroxysmal exertion-induced dyskinesia, alongside the phenotypically distinct condition congenital keratoconjunctivitis sicca and ichthyosiform dermatosis (CKCSID), commonly known as dry eye curly coat syndrome. EF is characterised by episodes of exercise-induced muscular hypertonicity and abnormal posturing, usually occurring after exercise or periods of excitement. CKCSID is a congenital disorder that manifests as a rough coat present at birth, with keratoconjunctivitis sicca apparent on eyelid opening at 10-14 days, followed by hyperkeratinisation of footpads and distortion of nails that develops over the next few months. We undertook a GWAS with 31 EF cases, 23 CKCSID cases, and a common set of 38 controls and identified statistically associated signals for EF and CKCSID on chromosome 7 (P(raw) 1.9×10(-14); P(genome) = 1.0×10(-5)) and chromosome 13 (P(raw) 1.2×10(-17); P(genome) = 1.0×10(-5)), respectively. We resequenced both the EF and CKCSID disease-associated regions in just five dogs and identified a 15,724 bp deletion spanning three exons of BCAN associated with EF and a single base-pair exonic deletion in FAM83H associated with CKCSID. Neither BCAN or FAM83H have been associated with equivalent disease phenotypes in any other species, thus demonstrating the ability to use the domestic dog to study the genetic basis of more than one disease simultaneously in a single breed and to identify multiple novel candidate genes in parallel.


Asunto(s)
Enfermedades de los Perros/genética , Exones , Estudio de Asociación del Genoma Completo , Eliminación de Secuencia , Enfermedades de la Piel/veterinaria , Animales , Secuencia de Bases , Cruzamiento , Mapeo Cromosómico/métodos , Perros , Predisposición Genética a la Enfermedad , Datos de Secuencia Molecular , Fenotipo , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Enfermedades de la Piel/genética
12.
Genes (Basel) ; 15(2)2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38397188

RESUMEN

Cherry eye is the common name for prolapse of the nictitans gland, a tear-producing gland situated under the third eyelid of dogs. Cherry eye is characterized by a red fleshy protuberance in the corner of the eye, resembling a cherry. This protrusion is a displacement of the normal gland of the third eyelid, thought to be caused by a defect in the connective tissue that secures the gland in place. Options for treatment may include anti-inflammatory medications in mild cases, but surgical replacement of the gland is usually indicated. Cherry eye is most often seen in dogs under the age of two years, with certain breeds having a higher incidence, suggesting a potential genetic association. Integration of panel genetic testing into routine clinical practice allows for the generation of large numbers of genotyped individuals paired with clinical records and enables the investigation of common disorders using a genome-wide association study (GWAS) approach at scale. In this investigation, several thousand cases and controls for cherry eye in both purebred dogs and mixed breeds are used for a large-scale GWAS, revealing a single peak of genome-wide significance on canine chromosome 18, directly at the location of the previously identified FGF4 insertion known to cause chondrodysplasia in several breeds.


Asunto(s)
Enfermedades de los Perros , Enfermedades de los Párpados , Perros , Animales , Membrana Nictitante/cirugía , Estudio de Asociación del Genoma Completo , Enfermedades de los Perros/genética , Prolapso , Enfermedades de los Párpados/complicaciones , Enfermedades de los Párpados/cirugía , Enfermedades de los Párpados/veterinaria
13.
BMC Genet ; 13: 55, 2012 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-22781464

RESUMEN

BACKGROUND: Neonatal cerebellar cortical degeneration is a neurodegenerative disease described in several canine breeds including the Beagle. Affected Beagles are unable to ambulate normally from the onset of walking and the main pathological findings include Purkinje cell loss with swollen dendritic processes. Previous reports suggest an autosomal recessive mode of inheritance. The development of massively parallel sequencing techniques has presented the opportunity to investigate individual clinical cases using genome-wide sequencing approaches. We used genome-wide mRNA sequencing (mRNA-seq) of cerebellum tissue from a single Beagle with neonatal cerebellar cortical degeneration as a method of candidate gene sequencing, with the aim of identifying the causal mutation. RESULTS: A four-week old Beagle dog presented with progressive signs of cerebellar ataxia and the owner elected euthanasia. Histopathology revealed findings consistent with cerebellar cortical degeneration. Genome-wide mRNA sequencing (mRNA-seq) of RNA from cerebellum tissue was used as a method of candidate gene sequencing. After analysis of the canine orthologues of human spinocerebellar ataxia associated genes, we identified a homozygous 8 bp deletion in the ß-III spectrin gene, SPTBN2, associated with spinocerebellar type 5 in humans. Genotype analysis of the sire, dam, ten clinically unaffected siblings, and an affected sibling from a previous litter, showed the mutation to fully segregate with the disorder. Previous studies have shown that ß-III spectrin is critical for Purkinje cell development, and the absence of this protein can lead to cell damage through excitotoxicity, consistent with the observed Purkinje cell loss, degeneration of dendritic processes and associated neurological dysfunction in this Beagle. CONCLUSIONS: An 8 bp deletion in the SPTBN2 gene encoding ß-III spectrin is associated with neonatal cerebellar cortical degeneration in Beagle dogs. This study shows that mRNA-seq is a feasible method of screening candidate genes for mutations associated with rare diseases when a suitable tissue resource is available.


Asunto(s)
Enfermedades de los Perros/genética , Mutación , Espectrina/genética , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/veterinaria , Animales , Enfermedades de los Perros/congénito , Perros , ARN Mensajero , Análisis de Secuencia de ADN , Ataxias Espinocerebelosas/congénito
14.
Vet Ophthalmol ; 15(5): 327-32, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22339941

RESUMEN

PURPOSE: To identify causative mutation(s) for congenital keratoconjunctivitis sicca and ichthyosiform dermatosis (CKCSID) in Cavalier King Charles spaniel (CKCS) dogs using a candidate gene approach. METHODS: DNA samples from 21 cases/parents were collected. Canine candidate genes (CCGs) for similar inherited human diseases were chosen. Twenty-eight candidate genes were identified by searching the Pubmed OMIM database (http://www.ncbi.nlm.nih.gov/omim). Canine orthologues of human candidate genes were identified using the Ensembl orthologue prediction facility (http://www.ensembl.org/index.html). Two microsatellites flanking each candidate gene were selected, and primers to amplify each microsatellite were designed using the Whitehead Institute primer design website (http://frodo.wi.mit.edu/primer3/). The microsatellites associated with all 28 CCGs were genotyped on a panel of 21 DNA samples from CKCS dogs (13 affected and eight carriers). Genotyping data was analyzed to identify markers homozygous in affected dogs and heterozygous in carriers (homozygosity mapping). RESULTS: None of the microsatellites associated with 25 of the CCGs displayed an association with CKCSID in the 21 DNA samples tested. Three CCGs associated microsatellites were monomorphic across all samples tested. CONCLUSIONS: Twenty-five CCGs were excluded as cause of CKCSID. Three CCGs could not be excluded from involvement in the inheritance of CKCSID.


Asunto(s)
Enfermedades de los Perros/genética , Ictiosis/veterinaria , Queratoconjuntivitis Seca/veterinaria , Envejecimiento , Animales , ADN , Enfermedades de los Perros/patología , Perros , Genotipo , Ictiosis/genética , Ictiosis/patología , Queratoconjuntivitis Seca/congénito , Queratoconjuntivitis Seca/patología , Repeticiones de Microsatélite
15.
PLoS One ; 17(5): e0267604, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35617214

RESUMEN

Cryptorchidism is the most common congenital sex development disorder in dogs. Despite this, little progress has been made in understanding its genetic background. Extensive genetic testing of dogs through consumer and veterinary channels using a high-density SNP genotyping microarray coupled with links to clinical records presents the opportunity for a large-scale genome-wide association study to elucidate the molecular risk factors associated with cryptorchidism in dogs. Using an inter-breed genome-wide association study approach, a significant statistical association on canine chromosome 10 was identified, with the top SNP pinpointing a variant of HMGA2 previously associated with adult weight variance. In further analysis we show that incidence of cryptorchidism is skewed towards smaller dogs in concordance with the identified variant's previous association with adult weight. This study represents the first putative variant to be associated with cryptorchidism in dogs.


Asunto(s)
Criptorquidismo , Enfermedades de los Perros , Proteína HMGA2/genética , Animales , Criptorquidismo/genética , Criptorquidismo/veterinaria , Enfermedades de los Perros/genética , Perros , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Polimorfismo de Nucleótido Simple
16.
Front Vet Sci ; 9: 944821, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36619947

RESUMEN

Many dogs and cats are affected by chronic diseases that significantly impact their health and welfare and relationships with humans. Some of these diseases can be challenging to treat, and a better understanding of early-life risk factors for diseases occurring in adulthood is key to improving preventive veterinary care and husbandry practices. This article reviews early-life risk factors for obesity and chronic enteropathy, and for chronic behavioral problems, which can also be intractable with life-changing consequences. Aspects of early life in puppies and kittens that can impact the risk of adult disorders include maternal nutrition, establishment of the gut microbiome, maternal behavior, weaning, nutrition during growth, growth rate, socialization with conspecifics and humans, rehoming and neutering. Despite evidence in some species that the disorders reviewed here reflect the developmental origins of health and disease (DOHaD), developmental programming has rarely been studied in dogs and cats. Priorities and strategies to increase knowledge of early-life risk factors and DOHaD in dogs and cats are discussed. Critical windows of development are proposed: preconception, gestation, the suckling period, early growth pre-neutering or pre-puberty, and growth post-neutering or post-puberty to adult size, the durations of which depend upon species and breed. Challenges to DOHaD research in these species include a large number of breeds with wide genetic and phenotypic variability, and the existence of many mixed-breed individuals. Moreover, difficulties in conducting prospective lifelong cohort studies are exacerbated by discontinuity in pet husbandry between breeders and subsequent owners, and by the dispersed nature of pet ownership.

17.
Vet Ophthalmol ; 14(6): 378-84, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22050825

RESUMEN

Primary lens luxation (PLL) is a well-recognized, painful and potentially blinding inherited ocular condition in dogs. We screened PLL-affected dogs of 30 different breeds, to identify those which carried a previously described c.1473+1 G>A mutation in ADAMTS17 that is associated with PLL in Miniature Bull terriers, Lancashire Heelers, and Jack Russell terriers. This ADAMTS17 mutation was identified in PLL-affected dogs from 14 additional breeds. PLL-affected dogs from some breeds (most notably the Shar pei and the Brittany spaniel) did not carry the G1473+1A ADAMTS17 mutation, indicating they must suffer from a genetically distinct form of the condition. We also estimated the frequency of this ADAMTS17 mutation in some of the breeds. Our findings indicate the mutation segregates in a large number of different breeds of dog, many of which are terriers or breeds with terrier co-ancestry, but some of which have more diverse origins. Our results also indicate that the mutation is present at high frequency within most of the breeds in which it segregates. In the miniature bull terrier breed estimates of mutation frequency ranged from 0.27 to 0.39, corresponding to 7.3-15.2% PLL-affected dogs in this breed. We also identified an increased risk of PLL associated with heterozygosity at ADAMTS17, suggesting that carriers carry a low risk of developing PLL.


Asunto(s)
Proteínas ADAM/genética , Enfermedades de los Perros/genética , Subluxación del Cristalino/veterinaria , Mutación Puntual/genética , Animales , Perros , Frecuencia de los Genes/genética , Pruebas Genéticas/veterinaria , Técnicas de Genotipaje/veterinaria , Subluxación del Cristalino/genética , Especificidad de la Especie
18.
PeerJ ; 7: e7983, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31772832

RESUMEN

BACKGROUND: Charcot-Marie-Tooth (CMT) disease is the most common neuromuscular disorder in humans affecting 40 out of 100,000 individuals. In 2008, we described the clinical, electrophysiological and pathological findings of a demyelinating motor and sensory neuropathy in Miniature Schnauzer dogs, with a suspected autosomal recessive mode of inheritance based on pedigree analysis. The discovery of additional cases has followed this work and led to a genome-wide association mapping approach to search for the underlying genetic cause of the disease. METHODS: For genome wide association screening, genomic DNA samples from affected and unaffected dogs were genotyped using the Illumina CanineHD SNP genotyping array. SBF2 and its variant were sequenced using primers and PCRs. RNA was extracted from muscle of an unaffected and an affected dog and RT-PCR performed. Immunohistochemistry for myelin basic protein was performed on peripheral nerve section specimens. RESULTS: The genome-wide association study gave an indicative signal on canine chromosome 21. Although the signal was not of genome-wide significance due to the small number of cases, the SBF2 (also known as MTMR13) gene within the region of shared case homozygosity was a strong positional candidate, as 22 genetic variants in the gene have been associated with demyelinating forms of Charcot-Marie-Tooth disease in humans. Sequencing of SBF2 in cases revealed a splice donor site genetic variant, resulting in cryptic splicing and predicted early termination of the protein based on RNA sequencing results. CONCLUSIONS: This study reports the first genetic variant in Miniature Schnauzer dogs responsible for the occurrence of a demyelinating peripheral neuropathy with abnormally folded myelin. This discovery establishes a genotype/phenotype correlation in affected Miniature Schnauzers that can be used for the diagnosis of these dogs. It further supports the dog as a natural model of a human disease; in this instance, Charcot-Marie-Tooth disease. It opens avenues to search the biological mechanisms responsible for the disease and to test new therapies in a non-rodent large animal model. In particular, recent gene editing methods that led to the restoration of dystrophin expression in a canine model of muscular dystrophy could be applied to other canine models such as this before translation to humans.

19.
Genes (Basel) ; 10(5)2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31117272

RESUMEN

Canine progressive retinal atrophies (PRA) are genetically heterogeneous diseases characterized by retinal degeneration and subsequent blindness. PRAs are untreatable and affect multiple dog breeds, significantly impacting welfare. Three out of seven Giant Schnauzer (GS) littermates presented with PRA around four years of age. We sought to identify the causal variant to improve our understanding of the aetiology of this form of PRA and to enable development of a DNA test. Whole genome sequencing of two PRA-affected full-siblings and both unaffected parents was performed. Variants were filtered based on those segregating appropriately for an autosomal recessive disorder and predicted to be deleterious. Successive filtering against 568 canine genomes identified a single nucleotide variant in the gene encoding NECAP endocytosis associated 1 (NECAP1): c.544G>A (p.Gly182Arg). Five thousand one hundred and thirty canids of 175 breeds, 10 cross-breeds and 3 wolves were genotyped for c.544G>A. Only the three PRA-affected GS were homozygous (allele frequency in GS, excluding proband family = 0.015). In addition, we identified heterozygotes belonging to Spitz and Dachshund varieties, demonstrating c.544G>A segregates in other breeds of German origin. This study, in parallel with the known retinal expression and role of NECAP1 in clathrin mediated endocytosis (CME) in synapses, presents NECAP1 as a novel candidate gene for retinal degeneration in dogs and other species.


Asunto(s)
Subunidades alfa de Complejo de Proteína Adaptadora/genética , Enfermedades de los Perros/genética , Retina/patología , Degeneración Retiniana/genética , Animales , Atrofia/genética , Atrofia/patología , Cruzamiento , Enfermedades de los Perros/patología , Perros , Endocitosis/genética , Mutación del Sistema de Lectura , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Degeneración Retiniana/patología , Sinapsis/genética , Sinapsis/patología , Secuenciación Completa del Genoma
20.
J Am Vet Med Assoc ; 253(6): 774-780, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-30179085

RESUMEN

CASE DESCRIPTION Two 12-week-old Norwegian Buhunds from a litter of 5 were evaluated because of slowly progressive cerebellar ataxia and fine head tremors. Two other females from the same pedigree had been previously evaluated for similar signs. CLINICAL FINDINGS Findings of general physical examination, CBC, and serum biochemical analysis were unremarkable for all affected puppies. Brain MRI and CSF analysis, including PCR assays for detection of Toxoplasma gondii, Neospora caninum, and canine distemper virus, were performed for 3 dogs, yielding unremarkable results. Urinary organic acid screening, enzyme analysis of fibroblasts cultured from skin biopsy specimens, and brainstem auditory-evoked response testing were performed for 2 puppies, and results were also unremarkable. TREATMENT AND OUTCOME The affected puppies were euthanized at the breeder's request, and their brains and spinal cords were submitted for histologic examination. Histopathologic findings included a markedly reduced expression of calbindin D28K and inositol triphosphate receptor 1 by Purkinje cells, with only mild signs of neuronal degeneration. Results of pedigree analysis suggested an autosomal recessive mode of inheritance. Candidate-gene analysis via mRNA sequencing for 2 of the affected puppies revealed no genetic variants that could be causally associated with the observed abnormalities. CLINICAL RELEVANCE Findings for the dogs of this report suggested the existence of a hereditary form of ataxia in Norwegian Buhunds with histologic characteristics suggestive of Purkinje cell dysfunction. The presence of hereditary ataxia in this breed must be considered both in clinical settings and for breeding strategies.


Asunto(s)
Enfermedades de los Perros/patología , Degeneraciones Espinocerebelosas/veterinaria , Animales , Diagnóstico Diferencial , Perros , Femenino , Masculino , Linaje , Degeneraciones Espinocerebelosas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA