Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Osteoarthritis Cartilage ; 22(10): 1419-28, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25278053

RESUMEN

OBJECTIVE: Mouse articular cartilage (AC) is mostly assessed by histopathology and its mechanics is poorly characterised. In this study: (1) we developed non-destructive imaging for quantitative assessment of AC morphology and (2) evaluated the mechanical implications of AC structural changes. METHODS: Knee joints obtained from naïve mice and from mice with osteoarthritis (OA) induced by destabilization of medial meniscus (DMM) for 4 and 12 weeks, were imaged by phosphotungstic acid (PTA) contrast enhanced micro-computed tomography (PTA-CT) and scored by conventional histopathology. Our software (Matlab) automatically segmented tibial AC, drew two regions centred on each tibial condyle and evaluated the volumes included. A finite element (FE) model of the whole mouse joint was implemented to evaluate AC mechanics. RESULTS: Our method achieved rapid, automated analysis of mouse AC (structural parameters in <10 h from knee dissection) and was able to localise AC loss in the central region of the medial tibial condyle. AC thickness decreased by 15% at 4 weeks and 25% at 12 weeks post DMM surgery, whereas histopathology scores were significantly increased only at 12 weeks. FE simulations estimated that AC thinning at early-stages in the DMM model (4 weeks) increases contact pressures (+39%) and Tresca stresses (+43%) in AC. CONCLUSION: PTA-CT imaging is a fast and simple method to assess OA in murine models. Once applied more extensively to confirm its robustness, our approach will be useful for rapidly phenotyping genetically modified mice used for OA research and to improve the current understanding of mouse cartilage mechanics.


Asunto(s)
Cartílago Articular/diagnóstico por imagen , Articulación de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/diagnóstico por imagen , Tibia/diagnóstico por imagen , Animales , Fenómenos Biomecánicos , Cartílago Articular/patología , Cartílago Articular/fisiopatología , Medios de Contraste , Modelos Animales de Enfermedad , Diagnóstico Precoz , Imagenología Tridimensional , Articulación de la Rodilla/patología , Articulación de la Rodilla/fisiopatología , Meniscos Tibiales/cirugía , Ratones , Osteoartritis de la Rodilla/patología , Osteoartritis de la Rodilla/fisiopatología , Ácido Fosfotúngstico , Tibia/patología , Tibia/fisiopatología , Microtomografía por Rayos X
2.
J Mech Behav Biomed Mater ; 119: 104530, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33895665

RESUMEN

Brain tissue is a heterogeneous material, constituted by a soft matrix filled with cerebrospinal fluid. The interactions between, and the complexity of each of these components are responsible for the non-linear rate-dependent behaviour that characterises what is one of the most complex tissue in nature. Here, we investigate the influence of the cutting rate on the fracture properties of brain, through wire cutting experiments. We also present a computational model for the rate-dependent behaviour of fracture propagation in soft materials, which comprises the effects of fluid interaction through a poro-hyperelastic formulation. The method is developed in the framework of finite strain continuum mechanics, implemented in a commercial finite element code, and applied to the case of an edge-crack remotely loaded by a controlled displacement. Experimental and numerical results both show a toughening effect with increasing rates, which is linked to the energy dissipated by the fluid-solid interactions in the region surrounding the crack tip.


Asunto(s)
Encéfalo , Análisis de Elementos Finitos , Geles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA