Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Physiol ; 597(1): 173-191, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30296333

RESUMEN

KEY POINTS: Newborn mice produce ultrasonic vocalization to communicate with their mother. The neuronal glycine transporter (GlyT2) is required for efficient loading of synaptic vesicles in glycinergic neurons. Mice lacking GlyT2 develop a phenotype that resembles human hyperekplexia and the mice die in the second postnatal week. In the present study, we show that GlyT2-knockout mice do not acquire adult ultrasonic vocalization-associated breathing patterns. Despite the strong impairment of glycinergic inhibition, they can produce sufficient expiratory airflow to produce ultrasonic vocalization. Because mouse ultrasonic vocalization is a valuable read-out in translational research, these data are highly relevant for a broad range of research fields. ABSTRACT: Mouse models are instrumental with respect to determining the genetic basis and neural foundations of breathing regulation. To test the hypothesis that glycinergic synaptic inhibition is required for normal breathing and proper post-inspiratory activity, we analysed breathing and ultrasonic vocalization (USV) patterns in neonatal mice lacking the neuronal glycine transporter (GlyT2). GlyT2-knockout (KO) mice have a profound reduction of glycinergic synaptic currents already at birth, develop a severe motor phenotype and survive only until the second postnatal week. At this stage, GlyT2-KO mice are smaller, have a reduced respiratory rate and still display a neonatal breathing pattern with active expiration for the production of USV. By contrast, wild-type mice acquire different USV-associated breathing patterns that depend on post-inspiratory control of air flow. Nonetheless, USVs per se remain largely indistinguishable between both genotypes. We conclude that GlyT2-KO mice, despite the strong impairment of glycinergic inhibition, can produce sufficient expiratory airflow to produce ultrasonic vocalization.


Asunto(s)
Proteínas de Transporte de Glicina en la Membrana Plasmática/fisiología , Respiración , Vocalización Animal/fisiología , Animales , Animales Recién Nacidos , Tronco Encefálico/fisiología , Proteínas de Transporte de Glicina en la Membrana Plasmática/genética , Ratones Noqueados , Ondas Ultrasónicas
2.
J Neurosci ; 30(27): 9324-34, 2010 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-20610767

RESUMEN

At surgical depths of anesthesia, inhalational anesthetics cause a loss of motor response to painful stimuli (i.e., immobilization) that is characterized by profound inhibition of spinal motor circuits. Yet, although clearly depressed, the respiratory motor system continues to provide adequate ventilation under these same conditions. Here, we show that isoflurane causes robust activation of CO(2)/pH-sensitive, Phox2b-expressing neurons located in the retrotrapezoid nucleus (RTN) of the rodent brainstem, in vitro and in vivo. In brainstem slices from Phox2b-eGFP mice, the firing of pH-sensitive RTN neurons was strongly increased by isoflurane, independent of prevailing pH conditions. At least two ionic mechanisms contributed to anesthetic activation of RTN neurons: activation of an Na(+)-dependent cationic current and inhibition of a background K(+) current. Single-cell reverse transcription-PCR analysis of dissociated green fluorescent protein-labeled RTN neurons revealed expression of THIK-1 (TWIK-related halothane-inhibited K(+) channel, K(2P)13.1), a channel that shares key properties with the native RTN current (i.e., suppression by inhalational anesthetics, weak rectification, inhibition by extracellular Na(+), and pH-insensitivity). Isoflurane also increased firing rate of RTN chemosensitive neurons in urethane-anesthetized rats, again independent of CO(2) levels. In these animals, isoflurane transiently enhanced activity of the respiratory system, an effect that was most prominent at low levels of respiratory drive and mediated primarily by an increase in respiratory frequency. These data indicate that inhalational anesthetics cause activation of RTN neurons, which serve an important integrative role in respiratory control; the increased drive provided by enhanced RTN neuronal activity may contribute, in part, to maintaining respiratory motor activity under immobilizing anesthetic conditions.


Asunto(s)
Anestésicos por Inhalación/farmacología , Células Quimiorreceptoras/efectos de los fármacos , Isoflurano/farmacología , Potenciales de la Membrana/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Centro Respiratorio/citología , Análisis de Varianza , Animales , Animales Recién Nacidos , Presión Sanguínea/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas de Homeodominio/genética , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/genética , Ratones , Ratones Transgénicos , Técnicas de Placa-Clamp/métodos , Nervio Frénico/efectos de los fármacos , Nervio Frénico/fisiología , Respiración/efectos de los fármacos , Factores de Transcripción/genética
3.
J Neurosci ; 29(18): 5806-19, 2009 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-19420248

RESUMEN

The retrotrapezoid "nucleus" (RTN), located in the rostral ventrolateral medullary reticular formation, contains a bilateral cluster of approximately 1000 glutamatergic noncatecholaminergic Phox2b-expressing propriobulbar neurons that are activated by CO(2) in vivo and by acidification in vitro. These cells are thought to function as central respiratory chemoreceptors, but this theory still lacks a crucial piece of evidence, namely that stimulating these particular neurons selectively in vivo increases breathing. The present study performed in anesthetized rats seeks to test whether this expectation is correct. We injected into the left RTN a lentivirus that expresses the light-activated cationic channel ChR2 (channelrhodopsin-2) (H134R mutation; fused to the fluorescent protein mCherry) under the control of the Phox2-responsive promoter PRSx8. Transgene expression was restricted to 423 +/- 38 Phox2b-expressing neurons per rat consisting of noncatecholaminergic and C1 adrenergic neurons (3:2 ratio). Photostimulation delivered to the RTN region in vivo via a fiberoptic activated the CO(2)-sensitive neurons vigorously, produced a long-lasting (t(1/2) = 11 s) increase in phrenic nerve activity, and caused a small and short-lasting cardiovascular stimulation. Selective lesions of the C1 cells eliminated the cardiovascular response but left the respiratory stimulation intact. In rats with C1 cell lesions, the mCherry-labeled axon terminals originating from the transfected noncatecholaminergic neurons were present exclusively in the lower brainstem regions that contain the respiratory pattern generator. These results provide strong evidence that the Phox2b-expressing noncatecholaminergic neurons of the RTN region function as central respiratory chemoreceptors.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Luz , Neuronas/metabolismo , Respiración , Centro Respiratorio/citología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Análisis de Varianza , Animales , Presión Sanguínea/fisiología , Mapeo Encefálico , Dióxido de Carbono/farmacología , Colina O-Acetiltransferasa/metabolismo , Electromiografía/métodos , Lateralidad Funcional , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Proteínas de Homeodominio/genética , Masculino , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Mutación/fisiología , Neuronas/efectos de los fármacos , Nervio Frénico/fisiología , Ratas , Ratas Sprague-Dawley , Respiración/efectos de los fármacos , Respiración/genética , Centro Respiratorio/lesiones , Centro Respiratorio/fisiología , Rodopsina/genética , Rodopsina/metabolismo , Factores de Tiempo , Transducción Genética/métodos , Tirosina 3-Monooxigenasa/metabolismo
4.
Sci Rep ; 10(1): 11051, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32632196

RESUMEN

Optogenetics offers unprecedented possibilities to investigate cortical networks. Yet, the number of successful optogenetic applications in non-human primates is still low, and the consequences of opsin expression in the primate brain are not well documented. We assessed histologically if we can target cerebrocortical networks with three common optogenetic constructs (AAV2/5-CaMKIIα-eNpHR3.0-mCherry, -ChR2-eYFP, -C1V1-mCherry). The frontal eye field or the dorsal premotor area of rhesus macaques were virally injected, and the resulting transduction spread, expression specificity, and opsin trafficking into axons projecting to parietal and visual areas were examined. After variable periods (2-24 months), expression was robust for all constructs at the injection sites. The CaMKIIα promoter driven-expression was predominant, but not exclusive, in excitatory neurons. In the case of eNpHR3.0-mCherry and ChR2-eYFP, opsins were present in axonal projections to target areas, in which sparse, retrogradely transduced neurons could also be found. Finally, the intracellular distribution of opsins differed: ChR2-eYFP had almost exclusive membrane localization, while eNpHR3.0-mCherry and C1V1-mCherry showed additional intracellular accumulations, which might affect neuronal survival in the long-term. Results indicate that all three constructs can be used for local neuronal modulation, but axonal stimulation and long-term use require additional considerations of construct selection and verification.


Asunto(s)
Corteza Cerebral/anatomía & histología , Macaca mulatta/anatomía & histología , Optogenética/métodos , Animales , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Lóbulo Frontal/anatomía & histología , Lóbulo Frontal/fisiología , Proteínas Luminiscentes/metabolismo , Macaca mulatta/fisiología , Masculino , Modelos Neurológicos , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología , Opsinas/metabolismo , Lóbulo Parietal/anatomía & histología , Lóbulo Parietal/fisiología , Corteza Visual/anatomía & histología , Corteza Visual/fisiología
5.
Neuron ; 108(6): 1075-1090.e6, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33080229

RESUMEN

Optogenetics has revolutionized neuroscience in small laboratory animals, but its effect on animal models more closely related to humans, such as non-human primates (NHPs), has been mixed. To make evidence-based decisions in primate optogenetics, the scientific community would benefit from a centralized database listing all attempts, successful and unsuccessful, of using optogenetics in the primate brain. We contacted members of the community to ask for their contributions to an open science initiative. As of this writing, 45 laboratories around the world contributed more than 1,000 injection experiments, including precise details regarding their methods and outcomes. Of those entries, more than half had not been published. The resource is free for everyone to consult and contribute to on the Open Science Framework website. Here we review some of the insights from this initial release of the database and discuss methodological considerations to improve the success of optogenetic experiments in NHPs.


Asunto(s)
Encéfalo , Neuronas , Optogenética/métodos , Primates , Animales , Neurociencias
6.
J Neurosci ; 28(10): 2506-15, 2008 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-18322095

RESUMEN

In neonatal rat brains in vitro, the rostral ventral respiratory column (rVRC) contains neurons that burst just before the phrenic nerve discharge (PND) and rebound after inspiration (pre-I neurons). These neurons, called parafacial respiratory group (pfRG), have been interpreted as a master inspiratory oscillator, an expiratory rhythm generator or simply as neonatal precursors of retrotrapezoid (RTN) chemoreceptor neurons. pfRG neurons have not been identified in adults, and their phenotype is unknown. Here, we confirm that the rVRC normally lacks pre-I neurons in adult anesthetized rats. However, we show that, during hypercapnic hypoxia, a population of rVRC expiratory-augmenting (E-AUG) neurons consistently develops a pre-I discharge. These cells reside in the Bötzinger region of the rVRC, they express glycine-transporter-2, and their axons arborize throughout the VRC. Hypoxia triggers an identical pre-I pattern in retroambigual expiratory bulbospinal neurons, but this pattern is not elicited in Bötzinger expiratory-decrementing neurons, Bötzinger inspiratory neurons, RTN neurons, and blood pressure-regulating neurons. In conclusion, under hypoxia in vivo, abdominal expiratory premotor neurons of adult rats develop a pre-I pattern reminiscent of that observed in neonate brainstems in vitro. In the rVRC of adult rats, pre-I cells include selected rhythmogenic neurons (glycinergic Bötzinger neurons) but not RTN chemoreceptors. We suggest that the pfRG may not be an independent rhythm generator but a heterogeneous collection of E-AUG neurons (glycinergic Bötzinger neurons, possibly facial motor and premotor neurons), the discharge of which becomes preinspiratory under specific experimental conditions resulting from, in part, a prolonged and intensified activity of postinspiratory neurons.


Asunto(s)
Espiración/fisiología , Neuronas/fisiología , Centro Respiratorio/fisiología , Animales , Hipoxia de la Célula/fisiología , Masculino , Neuronas/ultraestructura , Ratas , Ratas Sprague-Dawley , Centro Respiratorio/ultraestructura
7.
J Physiol ; 587(Pt 21): 5121-38, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19752119

RESUMEN

The retrotrapezoid nucleus (RTN) contains chemically defined neurons (ccRTN neurons) that provide a pH-regulated excitatory drive to the central respiratory pattern generator. Here we test whether ccRTN neurons respond to stimulation of the perifornical hypothalamus (PeF), a region that regulates breathing during sleep, stress and exercise. PeF stimulation with gabazine increased blood pressure, phrenic nerve discharge (PND) and the firing rate of ccRTN neurons in isoflurane-anaesthetized rats. Gabazine produced an approximately parallel upward shift of the steady-state relationship between ccRTN neuron firing rate and end-tidal CO(2), and a similar shift of the relationship between PND and end-tidal CO(2). The central respiratory modulation of ccRTN neurons persisted after gabazine without a change in pattern. Morphine administration typically abolished PND and reduced the discharge rate of most ccRTN neurons (by 25% on average). After morphine administration, PeF stimulation activated the ccRTN neurons normally but PND activation and the central respiratory modulation of the ccRTN neurons were severely attenuated. In the same rat preparation, most (58%) ccRTN neurons expressed c-Fos after exposure to hypercapnic hyperoxia (6-7% end-tidal CO(2); 3.5 h; no hypothalamic stimulation) and 62% expressed c-Fos under hypocapnia (approximately 3% end-tidal CO(2)) after PeF stimulation. Under baseline conditions (approximately 3% end-tidal CO(2), hyperoxia, no PeF stimulation) few (11%) ccRTN neurons expressed c-Fos. In summary, most ccRTN neurons are excited by posterior hypothalamic stimulation while retaining their normal response to CNS acidification. ccRTN neurons probably contribute both to the chemical drive of breathing and to the feed-forward control of breathing associated with emotions and or locomotion.


Asunto(s)
Relojes Biológicos/fisiología , Células Quimiorreceptoras/fisiología , Hipotálamo/fisiología , Centro Respiratorio/fisiología , Mecánica Respiratoria/fisiología , Animales , Células Quimiorreceptoras/química , Concentración de Iones de Hidrógeno , Hipotálamo/química , Vías Nerviosas/química , Vías Nerviosas/fisiología , Ratas , Ratas Sprague-Dawley , Músculos Respiratorios/inervación , Músculos Respiratorios/fisiología
8.
Respir Physiol Neurobiol ; 265: 141-152, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30395936

RESUMEN

Glycine is a primary inhibitory transmitter in the ventral medullary respiratory network, but the functional role of glycinergic neurons for breathing remains a matter of debate. We applied optogenetics to selectively modulate glycinergic neuron activity within regions of the rostral ventral respiratory column (VRC). Responses of the phrenic nerve activity to the light-driven stimulation were studied in the working heart-brainstem preparation from adult glycine transporter 2 Cre mice (GlyT2-Cre), which received a unilateral injection of a Cre-dependent AAV virus into Bötzinger and preBötzinger Complex. Sustained light stimulation from the ventral medullary surface resulted in a substantial depression of the phrenic nerve (PN) frequency, which in most cases was compensated by an increase in PN amplitude. Periodic, burst stimulation with variable intervals could alter and reset respiratory rhythm. We conclude that unilateral activation of the rostral VRC glycinergic neurons can significantly affect respiratory pattern by lengthening the expiratory interval and modulating phase transition.


Asunto(s)
Glicina/fisiología , Bulbo Raquídeo/fisiología , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Neuronas/fisiología , Nervio Frénico/fisiología , Centro Respiratorio/fisiología , Frecuencia Respiratoria/fisiología , Animales , Glicina/metabolismo , Proteínas de Transporte de Glicina en la Membrana Plasmática , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Optogenética
9.
Elife ; 5: e11290, 2015 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-26609811

RESUMEN

The ability of the adult brain to undergo plastic changes is of particular interest in medicine, especially regarding recovery from injuries or improving learning and cognition. Matrix metalloproteinases (MMPs) have been associated with juvenile experience-dependent primary visual cortex (V1) plasticity, yet little is known about their role in this process in the adult V1. Activation of MMPs is a crucial step facilitating structural changes in a healthy brain; however, upon brain injury, upregulated MMPs promote the spread of a lesion and impair recovery. To clarify these seemingly opposing outcomes of MMP-activation, we examined the effects of MMP-inhibition on experience-induced plasticity in healthy and stoke-affected adult mice. In healthy animals, 7-day application of MMP-inhibitor prevented visual plasticity. Additionally, treatment with MMP-inhibitor once but not twice following stroke rescued plasticity, normally lost under these conditions. Our data imply that an optimal level of MMP-activity is crucial for adult visual plasticity to occur.


Asunto(s)
Metaloproteinasas de la Matriz/metabolismo , Plasticidad Neuronal , Accidente Cerebrovascular/patología , Corteza Visual/fisiología , Percepción Visual , Animales , Modelos Animales de Enfermedad , Ratones
10.
J Appl Physiol (1985) ; 108(4): 995-1002, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20075262

RESUMEN

In this review, we examine why blood pressure (BP) and sympathetic nerve activity (SNA) increase during a rise in central nervous system (CNS) P(CO(2)) (central chemoreceptor stimulation). CNS acidification modifies SNA by two classes of mechanisms. The first one depends on the activation of the central respiratory controller (CRG) and causes the much-emphasized respiratory modulation of the SNA. The CRG probably modulates SNA at several brain stem or spinal locations, but the most important site of interaction seems to be the caudal ventrolateral medulla (CVLM), where unidentified components of the CRG periodically gate the baroreflex. CNS P(CO(2)) also influences sympathetic tone in a CRG-independent manner, and we propose that this process operates differently according to the level of CNS P(CO(2)). In normocapnia and indeed even below the ventilatory recruitment threshold, CNS P(CO(2)) exerts a tonic concentration-dependent excitatory effect on SNA that is plausibly mediated by specialized brain stem chemoreceptors such as the retrotrapezoid nucleus. Abnormally high levels of P(CO(2)) cause an aversive interoceptive awareness in awake individuals and trigger arousal from sleep. These alerting responses presumably activate wake-promoting and/or stress-related pathways such as the orexinergic, noradrenergic, and serotonergic neurons. These neuronal groups, which may also be directly activated by brain acidification, have brainwide projections that contribute to the CO(2)-induced rise in breathing and SNA by facilitating neuronal activity at innumerable CNS locations. In the case of SNA, these sites include the nucleus of the solitary tract, the ventrolateral medulla, and the preganglionic neurons.


Asunto(s)
Dióxido de Carbono/metabolismo , Sistema Nervioso Central/fisiología , Células Quimiorreceptoras/fisiología , Hemodinámica/fisiología , Receptores de Superficie Celular/fisiología , Mecánica Respiratoria/fisiología , Animales , Modelos Animales de Enfermedad , Humanos
11.
Respir Physiol Neurobiol ; 168(1-2): 59-68, 2009 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-19712903

RESUMEN

Breathing automaticity and CO(2) regulation are inseparable neural processes. The retrotrapezoid nucleus (RTN), a group of glutamatergic neurons that express the transcription factor Phox2b, may be a crucial nodal point through which breathing automaticity is regulated to maintain CO(2) constant. This review updates the analysis presented in prior publications. Additional evidence that RTN neurons have central respiratory chemoreceptor properties is presented, but this is only one of many factors that determine their activity. The RTN is also regulated by powerful inputs from the carotid bodies and, at least in the adult, by many other synaptic inputs. We also analyze how RTN neurons may control the activity of the downstream central respiratory pattern generator. Specifically, we review the evidence which suggests that RTN neurons (a) innervate the entire ventral respiratory column and (b) control both inspiration and expiration. Finally, we argue that the RTN neurons are the adult form of the parafacial respiratory group in neonate rats.


Asunto(s)
Células Quimiorreceptoras/fisiología , Respiración , Centro Respiratorio/citología , Centro Respiratorio/fisiología , Animales , Dióxido de Carbono/metabolismo , Proteínas de Homeodominio/metabolismo , Concentración de Iones de Hidrógeno , Modelos Biológicos , Red Nerviosa , Nervio Frénico/fisiología , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA