RESUMEN
There is growing interest in the P2X4 receptor as a therapeutic target for several cardiovascular, inflammatory and neurological conditions. Key to exploring the physiological and pathophysiological roles of P2X4 is access to selective compounds to probe function in cells, tissues and animal models. There has been a recent growth in selective antagonists for P2X4, though agonist selectivity is less well studied. As there are some known pharmacological differences between P2X receptors from different species, it is important to understand these differences when designing a pharmacological strategy to probe P2X4 function in human tissue and mouse models. Here, we provide a systematic comparison of agonist and antagonist pharmacology in 1321N1 cells expressing either human or mouse P2X4 orthologues. We identify a rank order of agonist potency of ATP > 2-MeSATP > αßmeATP = BzATP > CTP = γ-[(propargyl)-imido]-ATP for human P2X4 and ATP > 2-MeSATP = CTP > ATPγS = γ-[(propargyl)-imido]-ATP = BzATP for mouse. Human P2X4 is not activated by ATPγS but can be activated by αßmeATP. We identify a rank order of antagonist potency of BAY-1797 = PSB-12062 = BX-430 > 5-BDBD > TNP-ATP = PPADS for human P2X4 and BAY-1797 > PSB-12062 = PPADS > TNP-ATP for mouse. Mouse P2X4 is not antagonised by 5-BDBD or BX-430. The study reveals key pharmacological differences between human and mouse P2X4, highlighting caution when selecting tools for comparative studies between human and mouse and ascribing cellular responses of some commonly used agonists to P2X4.
RESUMEN
Neuropeptide Y (NPY) is co-released with norepinephrine and ATP by sympathetic nerves innervating arteries. Circulating NPY is elevated during exercise and cardiovascular disease, though information regarding the vasomotor function of NPY in human blood vessels is limited. Wire myography revealed NPY directly stimulated vasoconstriction (EC50 10.3 ± 0.4 nM; N = 5) in human small abdominal arteries. Maximum vasoconstriction was antagonised by both BIBO03304 (60.7 ± 6%; N = 6) and BIIE0246 (54.6 ± 5%; N = 6), suggesting contributions of both Y1 and Y2 receptor activation, respectively. Y1 and Y2 receptor expression in arterial smooth muscle cells was confirmed by immunocytochemistry, and western blotting of artery lysates. α,ß-meATP evoked vasoconstrictions (EC50 282 ± 32 nM; N = 6) were abolished by suramin (IC50 825 ± 45 nM; N = 5) and NF449 (IC50 24 ± 5 nM; N = 5), suggesting P2X1 mediates vasoconstriction in these arteries. P2X1, P2X4 and P2X7 were detectable by RT-PCR. Significant facilitation (1.6-fold) of α,ß-meATP-evoked vasoconstrictions was observed when submaximal NPY (10 nM) was applied between α,ß-meATP applications. Facilitation was antagonised by either BIBO03304 or BIIE0246. These data reveal NPY causes direct vasoconstriction in human arteries which is dependent upon both Y1 and Y2 receptor activation. NPY also acts as a modulator, facilitating P2X1-dependent vasoconstriction. Though in contrast to the direct vasoconstrictor effects of NPY, there is redundancy between Y1 and Y2 receptor activation to achieve the facilitatory effect.
Asunto(s)
Neuropéptido Y , Receptores Purinérgicos P2X1 , Humanos , Neuropéptido Y/farmacología , Vasoconstricción , Vasoconstrictores/farmacología , Receptores de Neuropéptido Y/metabolismo , Arterias/metabolismoRESUMEN
The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16178. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Canales Iónicos/química , Ligandos , Receptores Acoplados a Proteínas G , Bases de Datos FactualesRESUMEN
BACKGROUND AND PURPOSE: P2X4 is a ligand-gated cation channel activated by extracellular ATP involved in neuropathic pain, inflammation and arterial tone. EXPERIMENTAL APPROACH: Natural products were screened against human or mouse P2X4 activity using fura-2 loaded 1321N1 cells for measurement of intracellular Ca2+ responses. Whole-cell currents were measured by patch clamp. Human primary macrophage chemokine release was used to assess effect of taspine on inflammatory cell function. An enzymatic assay was performed to assess the effect of taspine on recombinant PI3-kinase. KEY RESULTS: A natural product screen identified taspine as an inhibitor of human P2X4 activity. Taspine inhibits human and mouse P2X4-mediated Ca2+ influx in 1321N1 cells expressing receptors but lacked activity at human P2X2, P2X3, P2X2/3 and P2X7 receptors. Taspine inhibited the maximal response at human and mouse P2X4 but effective on ATP potency. Taspine has a slow onset rate (~15 min for half-maximal inhibition), irreversible over 30 min of washout. Taspine inhibits P2X4-mediated Ca2+ signalling in mouse BV-2 microglia cells and human primary macrophage. Taspine inhibited P2X4-mediated CXCL5 secretion in human primary macrophage. Taspine reversed ivermectin-induced potentiation of P2X4 currents in 1321N1 stably expressing cells. The PI3-kinase inhibitor LY294002 mimicked the properties of taspine on P2X4-mediated Ca2+ influx and whole-cell currents. Taspine directly inhibited the enzymatic activity of recombinant PI3-kinase in a competitive manner. CONCLUSION AND IMPLICATIONS: Taspine is a novel natural product P2X4 receptor inhibitor, mediating its effect through PI3-kinase inhibition rather than receptor antagonism. Taspine can inhibit the pro-inflammatory signalling by P2X4 in human primary macrophage.