Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 228(Suppl 4): S302-S310, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37788497

RESUMEN

Recently developed molecular imaging approaches can be used to visualize specific host responses and pathology in a quest to image infections where few microbe-specific tracers have been developed and in recognition that host responses contribute to morbidity and mortality in their own right. Here we highlight several recent examples of these imaging approaches adapted for imaging infections. The early successes and new avenues described here encompass diverse imaging modalities and leverage diverse aspects of the host response to infection-including inflammation, tissue injury and healing, and key nutrients during host-pathogen interactions. Clearly, these approaches merit further preclinical and clinical study as they are complementary and orthogonal to the pathogen-focused imaging modalities currently under investigation.


Asunto(s)
Interacciones Huésped-Patógeno , Inflamación , Humanos
2.
PLoS Biol ; 18(2): e3000590, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32069316

RESUMEN

DO (HLA-DO, in human; murine H2-O) is a highly conserved nonclassical major histocompatibility complex class II (MHC II) accessory molecule mainly expressed in the thymic medulla and B cells. Previous reports have suggested possible links between DO and autoimmunity, Hepatitis C (HCV) infection, and cancer, but the mechanism of how DO contributes to these diseases remains unclear. Here, using a combination of various in vivo approaches, including peptide elution, mixed lymphocyte reaction, T-cell receptor (TCR) deep sequencing, tetramer-guided naïve CD4 T-cell precursor enumeration, and whole-body imaging, we report that DO affects the repertoire of presented self-peptides by B cells and thymic epithelium. DO induces differential effects on epitope presentation and thymic selection, thereby altering CD4 T-cell precursor frequencies. Our findings were validated in two autoimmune disease models by demonstrating that lack of DO increases autoreactivity and susceptibility to autoimmune disease development.


Asunto(s)
Enfermedades Autoinmunes/genética , Predisposición Genética a la Enfermedad/genética , Antígenos de Histocompatibilidad Clase II/genética , Animales , Células Presentadoras de Antígenos/inmunología , Enfermedades Autoinmunes/inmunología , Autoinmunidad/genética , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Colágeno/administración & dosificación , Colágeno/inmunología , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Glicoproteína Mielina-Oligodendrócito/inmunología , Péptidos/inmunología , Células Precursoras de Linfocitos T/inmunología , Timo/inmunología
3.
Eur J Nucl Med Mol Imaging ; 49(12): 4088-4096, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35713665

RESUMEN

PURPOSE: Macrophages represent an essential means of sequestration and immune evasion for Mycobacterium tuberculosis. Pulmonary tuberculosis (TB) is characterized by dense collections of tissue-specific and recruited macrophages, both of which abundantly express CSF1R on their outer surface. 4-Cyano-N-(5-(1-(dimethylglycyl)piperidin-4-yl)-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-2-yl)-1H-imidazole-2-carboxamide (JNJ-28312141) is a reported high affinity, CSF1R-selective antagonist. We report the radiosynthesis of 4-cyano-N-(5-(1-(N-methyl-N-([11C]methyl)glycyl)piperidin-4-yl)-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-2-yl)-1H-imidazole-2-carboxamide ([11C]JNJ-28312141) and non-invasive detection of granulomatous and diffuse lesions in a mouse model of TB using positron emission tomography (PET). METHODS: Nor-methyl-JNJ-28312141 precursor was radiolabeled with [11C]iodomethane to produce [11C]JNJ-28312141. PET/CT imaging was performed in the C3HeB/FeJ murine model of chronic pulmonary TB to co-localize radiotracer uptake with granulomatous lesions observed on CT. Additionally, CSF1R, Iba1 fluorescence immunohistochemistry was performed to co-localize CSF1R target with reactive macrophages in infected and healthy mice. RESULTS: Radiosynthesis of [11C]JNJ-28312141 averaged a non-decay-corrected yield of 18.7 ± 2.1%, radiochemical purity of 99%, and specific activity averaging 658 ± 141 GBq/µmol at the end-of-synthesis. PET/CT imaging in healthy mice showed hepatobiliary [13.39-25.34% ID/g, percentage of injected dose per gram of tissue (ID/g)] and kidney uptake (12.35% ID/g) at 40-50 min post-injection. Infected mice showed focal pulmonary lesion uptake (5.58-12.49% ID/g), hepatobiliary uptake (15.30-40.50% ID/g), cervical node uptake, and renal uptake (11.66-29.33% ID/g). The ratio of infected lesioned lung/healthy lung uptake is 5.91:1, while the ratio of lesion uptake to adjacent infected radiolucent lung is 2.8:1. Pre-administration of 1 mg/kg of unlabeled JNJ-28312141 with [11C]JNJ-28312141 in infected animals resulted in substantial blockade. Fluorescence microscopy of infected and uninfected whole lung sections exclusively co-localized CSF1R staining with abundant Iba1 + macrophages. Healthy lung exhibited no CSF1R staining and very few Iba1 + macrophages. CONCLUSION: [11C]JNJ-28312141 binds specifically to CSF1R + macrophages and delineates granulomatous foci of disease in a murine model of pulmonary TB.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Tuberculosis , Animales , Compuestos de Bifenilo , Modelos Animales de Enfermedad , Imidazoles , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/métodos , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , Tomografía Computarizada por Rayos X , Tuberculosis/diagnóstico por imagen
4.
Proc Natl Acad Sci U S A ; 116(5): 1686-1691, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30635412

RESUMEN

While neuroinflammation is an evolving concept and the cells involved and their functions are being defined, microglia are understood to be a key cellular mediator of brain injury and repair. The ability to measure microglial activity specifically and noninvasively would be a boon to the study of neuroinflammation, which is involved in a wide variety of neuropsychiatric disorders including traumatic brain injury, demyelinating disease, Alzheimer's disease (AD), and Parkinson's disease, among others. We have developed [11C]CPPC [5-cyano-N-(4-(4-[11C]methylpiperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide], a positron-emitting, high-affinity ligand that is specific for the macrophage colony-stimulating factor 1 receptor (CSF1R), the expression of which is essentially restricted to microglia within brain. [11C]CPPC demonstrates high and specific brain uptake in a murine and nonhuman primate lipopolysaccharide model of neuroinflammation. It also shows specific and elevated uptake in a murine model of AD, experimental allergic encephalomyelitis murine model of demyelination and in postmortem brain tissue of patients with AD. Radiation dosimetry in mice indicated [11C]CPPC to be safe for future human studies. [11C]CPPC can be synthesized in sufficient radiochemical yield, purity, and specific radioactivity and possesses binding specificity in relevant models that indicate potential for human PET imaging of CSF1R and the microglial component of neuroinflammation.


Asunto(s)
Factor Estimulante de Colonias de Macrófagos/metabolismo , Microglía/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Placa Amiloide/metabolismo , Tomografía de Emisión de Positrones/métodos , Primates , Radiofármacos/metabolismo
5.
Mol Imaging ; 19: 1536012120936876, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32598214

RESUMEN

PURPOSE: Imaging is limited in the evaluation of bacterial infection. Direct imaging of in situ bacteria holds promise for noninvasive diagnosis. We investigated the ability of a bacterial thymidine kinase inhibitor ([124I]FIAU) to image pulmonary and musculoskeletal infections. METHODS: Thirty-three patients were prospectively accrued: 16 with suspected musculoskeletal infection, 14 with suspected pulmonary infection, and 3 with known rheumatoid arthritis without infection. Thirty-one patients were imaged with [124I]FIAU PET/CT and 28 with [18F]FDG PET/CT. Patient histories were reviewed by an experienced clinician with subspecialty training in infectious diseases and were determined to be positive, equivocal, or negative for infection. RESULTS: Sensitivity, specificity, positive-predictive value, negative-predictive value, and accuracy of [124I]FIAU PET/CT for diagnosing infection were estimated as 7.7% to 25.0%, 0.0%, 50%, 0.0%, and 20.0% to 71.4% for musculoskeletal infections and incalculable-100.0%, 51.7% to 72.7%, 0.0% to 50.0%, 100.0%, and 57.1% to 78.6% for pulmonary infections, respectively. The parameters for [18F]FDG PET/CT were 75.0% to 92.3%, 0.0%, 23.1% to 92.3%, 0.0%, and 21.4% to 85.7%, respectively, for musculoskeletal infections and incalculable to 100.0%, 0.0%, 0.0% to 18.2%, incalculable, and 0.0% to 18.2% for pulmonary infections, respectively. CONCLUSIONS: The high number of patients with equivocal clinical findings prevented definitive conclusions from being made regarding the diagnostic efficacy of [124I]FIAU. Future studies using microbiology to rigorously define infection in patients and PET radiotracers optimized for image quality are needed.


Asunto(s)
Arabinofuranosil Uracilo/análogos & derivados , Infecciones Bacterianas/diagnóstico por imagen , Radioisótopos de Yodo/química , Enfermedades Musculoesqueléticas/diagnóstico por imagen , Enfermedades Musculoesqueléticas/microbiología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Infecciones del Sistema Respiratorio/diagnóstico por imagen , Infecciones del Sistema Respiratorio/microbiología , Adulto , Anciano , Anciano de 80 o más Años , Arabinofuranosil Uracilo/química , Femenino , Fluorodesoxiglucosa F18/química , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Sensibilidad y Especificidad
6.
Circ Res ; 122(10): e75-e83, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29483093

RESUMEN

RATIONALE: Disrupted proteostasis is one major pathological trait that heart failure (HF) shares with other organ proteinopathies, such as Alzheimer and Parkinson diseases. Yet, differently from the latter, whether and how cardiac preamyloid oligomers (PAOs) develop in acquired forms of HF is unclear. OBJECTIVE: We previously reported a rise in monophosphorylated, aggregate-prone desmin in canine and human HF. We now tested whether monophosphorylated desmin acts as the seed nucleating PAOs formation and determined whether positron emission tomography is able to detect myocardial PAOs in nongenetic HF. METHODS AND RESULTS: Here, we first show that toxic cardiac PAOs accumulate in the myocardium of mice subjected to transverse aortic constriction and that PAOs comigrate with the cytoskeletal protein desmin in this well-established model of acquired HF. We confirm this evidence in cardiac extracts from human ischemic and nonischemic HF. We also demonstrate that Ser31 phosphorylated desmin aggregates extensively in cultured cardiomyocytes. Lastly, we were able to detect the in vivo accumulation of cardiac PAOs using positron emission tomography for the first time in acquired HF. CONCLUSIONS: Ser31 phosphorylated desmin is a likely candidate seed for the nucleation process leading to cardiac PAOs deposition. Desmin post-translational processing and misfolding constitute a new, attractive avenue for the diagnosis and treatment of the cardiac accumulation of toxic PAOs that can now be measured by positron emission tomography in acquired HF.


Asunto(s)
Amiloide/metabolismo , Desmina/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , Procesamiento Proteico-Postraduccional , Amiloide/análisis , Amiloide/efectos de los fármacos , Animales , Catequina/análogos & derivados , Catequina/farmacología , Células Cultivadas , Desmina/genética , Femenino , Vectores Genéticos , Insuficiencia Cardíaca/etiología , Humanos , Masculino , Espectrometría de Masas/métodos , Ratones , Ratones Noqueados , Mutagénesis Sitio-Dirigida , Isquemia Miocárdica/complicaciones , Fosforilación , Polimorfismo de Nucleótido Simple , Tomografía de Emisión de Positrones/métodos , Presión , Agregado de Proteínas/efectos de los fármacos , Pliegue de Proteína , Ratas , Proteínas Recombinantes/metabolismo , alfa-Cristalinas/deficiencia , beta-Cristalinas/deficiencia
7.
Int J Mol Sci ; 21(18)2020 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-32932591

RESUMEN

Prostate-Specific Membrane Antigen (PSMA) is an established biomarker for the imaging and experimental therapy of prostate cancer (PCa), as it is strongly upregulated in high-grade primary, androgen-independent, and metastatic lesions. Here, we report on the development and functional characterization of recombinant single-chain Fv (scFv) and Fab fragments derived from the 5D3 PSMA-specific monoclonal antibody (mAb). These fragments were engineered, heterologously expressed in insect S2 cells, and purified to homogeneity with yields up to 20 mg/L. In vitro assays including ELISA, immunofluorescence and flow cytometry, revealed that the fragments retain the nanomolar affinity and single target specificity of the parent 5D3 antibody. Importantly, using a murine xenograft model of PCa, we verified the suitability of fluorescently labeled fragments for in vivo imaging of PSMA-positive tumors and compared their pharmacokinetics and tissue distribution to the parent mAb. Collectively, our data provide an experimental basis for the further development of 5D3 recombinant fragments for future clinical use.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos de Superficie/inmunología , Glutamato Carboxipeptidasa II/inmunología , Neoplasias de la Próstata/inmunología , Animales , Línea Celular , Línea Celular Tumoral , Fluorescencia , Humanos , Insectos , Masculino , Ratones , Ratones Desnudos , Células PC-3 , Proteínas Recombinantes/inmunología , Anticuerpos de Cadena Única/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
8.
Mol Pharm ; 16(6): 2590-2604, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31002252

RESUMEN

The prostate-specific membrane antigen (PSMA) is a validated target for detection and management of prostate cancer (PC). It has also been utilized for targeted drug delivery through antibody-drug conjugates and polymeric micelles. Polyamidoamine (PAMAM) dendrimers are emerging as a versatile platform in a number of biomedical applications due to their unique physicochemical properties, including small size, large number of reactive terminal groups, bulky interior void volume, and biocompatibility. Here, we report the synthesis of generation 4 PSMA-targeted PAMAM dendrimers [G4(MP-KEU)] and evaluation of their targeting properties in vitro and in vivo using an experimental model of PC. A facile, one-pot synthesis gave nearly neutral nanoparticles with a narrow size distribution of 5 nm in diameter and a molecular weight of 27.3 kDa. They exhibited in vitro target specificity with a dissociation constant ( Kd) of 0.32 ± 0.23 µm and preferential accumulation in PSMA+ PC3 PIP tumors versus isogenic PSMA- PC3 flu tumors. Positron emission tomography-computed tomography imaging and ex vivo biodistribution studies of dendrimers radiolabeled with 64Cu, [64Cu]G4(MP-KEU), demonstrated high accumulation in PSMA+ PC3 PIP tumors at 24 h post-injection (45.83 ± 20.09% injected dose per gram of tissue, %ID/g), demonstrating a PSMA+ PC3 PIP/PSMA- PC3 flu ratio of 7.65 ± 3.35. Specific accumulation of G4(MP-KEU) and [64Cu]G4(MP-KEU) in PSMA+ PC3 PIP tumors was inhibited by the known small-molecule PSMA inhibitor, ZJ-43. On the contrary, G4(Ctrl), control dendrimers without PSMA-targeting moieties, showed comparable low accumulation of ∼1%ID/g in tumors irrespective of PSMA expression, further confirming PSMA+ tumor-specific uptake of G4(MP-KEU). These results suggest that G4(MP-KEU) may represent a suitable scaffold by which to target PSMA-expressing tissues with imaging and therapeutic agents.


Asunto(s)
Dendrímeros/química , Nanopartículas/química , Neoplasias de la Próstata/diagnóstico por imagen , Animales , Masculino , Ratones , Micelas , Imagen Molecular/métodos , Tomografía de Emisión de Positrones
9.
Prostate ; 77(7): 749-764, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28247415

RESUMEN

BACKGROUND: Prostate-specific membrane antigen (PSMA) is a validated target for the imaging and therapy of prostate cancer. Here, we report the detailed characterization of four novel murine monoclonal antibodies (mAbs) recognizing human PSMA as well as PSMA orthologs from different species. METHODS: Performance of purified mAbs was assayed using a comprehensive panel of in vitro experimental setups including Western blotting, immunofluorescence, immunohistochemistry, ELISA, flow cytometry, and surface-plasmon resonance. Furthermore, a mouse xenograft model of prostate cancer was used to compare the suitability of the mAbs for in vivo applications. RESULTS: All mAbs demonstrate high specificity for PSMA as documented by the lack of cross-reactivity to unrelated human proteins. The 3F11 and 1A11 mAbs bind linear epitopes spanning residues 226-243 and 271-288 of human PSMA, respectively. 3F11 is also suitable for the detection of PSMA orthologs from mouse, pig, dog, and rat in experimental setups where the denatured form of PSMA is used. 5D3 and 5B1 mAbs recognize distinct surface-exposed conformational epitopes and are useful for targeting PSMA in its native conformation. Most importantly, using a mouse xenograft model of prostate cancer we show that both the intact 5D3 and its Fab fragment are suitable for in vivo imaging. CONCLUSIONS: With apparent affinities of 0.14 and 1.2 nM as determined by ELISA and flow cytometry, respectively, 5D3 has approximately 10-fold higher affinity for PSMA than the clinically validated mAb J591 and, therefore, is a prime candidate for the development of next-generation theranostics to target PSMA. Prostate 77:749-764, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/inmunología , Antígenos de Superficie , Glutamato Carboxipeptidasa II , Próstata , Neoplasias de la Próstata , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales de Origen Murino/farmacología , Antígenos de Superficie/inmunología , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Glutamato Carboxipeptidasa II/inmunología , Humanos , Masculino , Ratones , Próstata/inmunología , Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/inmunología , Nanomedicina Teranóstica/métodos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
10.
Mol Pharm ; 14(6): 1906-1915, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28445649

RESUMEN

Collagen hybridizing peptides (CHPs) have a great potential for use in targeted drug delivery, diagnostics, and regenerative medicine due to their ability to specifically bind to denatured collagens associated with many pathologic conditions. Since peptides generally suffer from poor enzymatic stability, resulting in rapid degradation and elimination in vivo, CHP's serum stability is a critical parameter that may dictate its pharmacokinetic behavior. Here, we report the serum stability of a series of monomeric CHP derivatives and establish how peptide length, amino acid composition, terminal modification, and linker chemistry influence their availability in serum. We show that monomeric CHPs comprised of the collagen-like Gly-Pro-Hyp motif are resistant to common serum proteinases and that their stability can be further increased by simple N-terminal labeling which negates CHP's susceptibility to proline-specific exopeptidases. When fluorescent dyes are conjugated to a CHP via maleimide-thiol reaction, the dye can transfer from CHP onto serum proteins (e.g., albumin), resulting in an unexpected drop in signal during serum stability assays and off-target accumulation during in vivo tests. This work is the crucial first step toward understanding the pharmacokinetic behavior of CHPs, which can facilitate the development of CHP-based theranostics.


Asunto(s)
Colágeno/química , Péptidos/química , Animales , Matriz Extracelular/química , Femenino , Colorantes Fluorescentes/química , Ratones , Péptidos/sangre , Péptidos/farmacocinética
11.
Biomacromolecules ; 18(1): 201-209, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-28001364

RESUMEN

Targeted delivery of drug-encapsulated nanoparticles is a promising new approach to safe and effective therapeutics for cancer. Here we investigate the pharmacokinetics and biodistribution of a prostate-specific membrane antigen (PSMA)-targeted nanoparticle based on a poly(lactic acid)-polyethylene glycol copolymer by utilizing single photon emission computed tomography (SPECT) and fluorescence imaging of a low-molecular-weight, PSMA-targeting moiety attached to the surface and oriented toward the outside environment. Tissue biodistribution of the radioactive, PSMA-targeted nanoparticles in mice containing PSMA(+) PC3 PIP and PSMA(-) PC3 flu (control) tumors demonstrated similar accumulation compared to the untargeted particles within all tissues except for the tumor and liver by 96 h postinjection. For PSMA(+) PC3 PIP tumor, the targeted nanoparticle demonstrated retention of 6.58% injected dose (ID)/g at 48 h and remained nearly at that level out to 96 h, whereas the untargeted nanoparticle showed a 48 h retention of 8.17% ID/g followed by a significant clearance to 2.37% ID/g at 96 h (P < 0.02). On the other hand, for control tumor, both targeted and untargeted particles displayed similar 48 h retentions and rates of clearance over 96 h. Ex vivo microscopic analysis with near-infrared versions of the nanoparticles indicated retention within PSMA(+) tumor epithelial cells as well as tumor-associated macrophages for targeted particles and primarily macrophage-associated uptake for the untargeted particles. Retention in control tumor was primarily associated with tumor vasculature and macrophages. The data demonstrate the utility of radioimaging to assess nanoparticle biodistribution and suggest that active targeting has a modest positive effect on tumor localization of PSMA-targeted PLA-PEG nanoparticles that have been derivatized for imaging.


Asunto(s)
Antígenos de Superficie/metabolismo , Bencenosulfonatos/farmacocinética , Glutamato Carboxipeptidasa II/metabolismo , Radioisótopos de Indio/farmacocinética , Indoles/farmacocinética , Nanopartículas/administración & dosificación , Polietilenglicoles/química , Neoplasias de la Próstata/diagnóstico por imagen , Radiofármacos/farmacocinética , Animales , Colorantes Fluorescentes/farmacocinética , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Nanopartículas/química , Polímeros/administración & dosificación , Polímeros/química , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Espectroscopía Infrarroja Corta , Distribución Tisular , Células Tumorales Cultivadas
12.
Prostate ; 76(2): 215-25, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26499105

RESUMEN

BACKGROUND: The LNCaP cell line was originally isolated from the lymph node of a patient with metastatic prostate cancer. Many cell lines have been derived from LNCaP by selective pressures to study different aspects of prostate cancer progression. When injected subcutaneously into male athymic nude mice, LNCaP and its derivatives rarely metastasize. METHODS: Here, we describe the characteristics of a new LNCaP derivative, JHU-LNCaP-SM, which was generated by long term passage in normal cell culture conditions. RESULTS: Short tandem repeat (STR) analysis and genomic sequencing verified JHU-LNCaP-SM derivation from parental LNCaP cells. JHU-LNCaP-SM cells express the same mutated androgen receptor (AR) but unlike LNCaP, are no longer androgen dependent for growth. The cells demonstrate an attenuated androgen responsiveness in transcriptional assays and retain androgen sensitive expression of PSA, AR, and PSMA. Unlike parental LNCaP, JHU-LNCaP-SM cells quickly form subcutaneous tumors in male athymic nude mice, reliably metastasize to the lymph nodes and display a striking intra-tumoral and spreading hemorrhagic phenotype as tumor xenografts. CONCLUSIONS: The JHU-LNCaP-SM cell line is a new isolate of LNCaP, which facilitates practical, preclinical studies of spontaneous metastasis of prostate cancer through lymphatic tissues.


Asunto(s)
Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Animales , Línea Celular Tumoral , Humanos , Masculino , Ratones , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
13.
Hum Mol Genet ; 22(8): 1574-80, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23314019

RESUMEN

Imaging of the human brain has been an invaluable aid in understanding neuropsychopharmacology and, in particular, the role of dopamine in the striatum in mental illness. Here, we report a study in a genetic mouse model for major mental illness guided by results from human brain imaging: a systematic study using small animal positron emission tomography (PET), autoradiography, microdialysis and molecular biology in a putative dominant-negative mutant DISC1 transgenic model. This mouse model showed augmented binding of radioligands to the dopamine D2 receptor (D2R) in the striatum as well as neurochemical and behavioral changes to methamphetamine administration. Previously we reported that this model displayed deficits in the forced swim test, a representative indicator of antidepressant efficacy. By combining the results of our two studies, we propose a working hypothesis for future studies that this model might represent a mixed condition of depression and psychosis. We hope that this study will also help bridge a major gap in translational psychiatry between basic characterization of animal models and clinico-pharmacological assessment of patients mainly through PET imaging.


Asunto(s)
Dopamina/metabolismo , Imagen Molecular , Proteínas del Tejido Nervioso/genética , Tomografía de Emisión de Positrones/métodos , Receptores de Dopamina D2/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Mapeo Encefálico , Cuerpo Estriado/metabolismo , Cuerpo Estriado/ultraestructura , Dopamina/genética , Humanos , Metanfetamina/administración & dosificación , Ratones , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/metabolismo , Unión Proteica , Radiografía , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/aislamiento & purificación
14.
Antimicrob Agents Chemother ; 59(1): 642-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25403669

RESUMEN

Current tools for monitoring response to tuberculosis treatments have several limitations. Noninvasive biomarkers could accelerate tuberculosis drug development and clinical studies, but to date little progress has been made in developing new imaging technologies for this application. In this study, we developed pulmonary single-photon emission computed tomography (SPECT) using radioiodinated DPA-713 to serially monitor the activity of tuberculosis treatments in live mice, which develop necrotic granulomas and cavitary lesions. C3HeB/FeJ mice were aerosol infected with Mycobacterium tuberculosis and administered either a standard or a highly active bedaquiline-containing drug regimen. Serial (125)I-DPA-713 SPECT imaging was compared with (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) and standard microbiology. Ex vivo studies were performed to characterize and correlate DPA-713 imaging with cellular and cytokine responses. Pulmonary (125)I-DPA-713 SPECT, but not (18)F-FDG PET, was able to correctly identify the bactericidal activities of the two tuberculosis treatments as early as 4 weeks after the start of treatment (P < 0.03). DPA-713 readily penetrated the fibrotic rims of necrotic and cavitary lesions. A time-dependent decrease in both tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) levels was observed with treatments, with (125)I-DPA-713 SPECT correlating best with tissue TNF-α levels (ρ = 0.94; P < 0.01). (124)I-DPA-713 was also evaluated as a PET probe and demonstrated a 4.0-fold-higher signal intensity in the infected tuberculous lesions than uninfected controls (P = 0.03). These studies provide proof of concept for application of a novel noninvasive imaging biomarker to monitor tuberculosis treatments, with the potential for application for humans.


Asunto(s)
Acetamidas , Antituberculosos/farmacología , Radioisótopos de Yodo , Pirazoles , Pirimidinas , Tomografía Computarizada de Emisión de Fotón Único/métodos , Tuberculosis/tratamiento farmacológico , Animales , Citocinas/metabolismo , Diagnóstico por Imagen/métodos , Diarilquinolinas/farmacología , Modelos Animales de Enfermedad , Femenino , Fluorodesoxiglucosa F18 , Pulmón/patología , Ratones Endogámicos C3H , Mycobacterium tuberculosis/patogenicidad , Tomografía de Emisión de Positrones , Tuberculosis/patología
15.
Biochem Biophys Res Commun ; 461(1): 70-5, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25858322

RESUMEN

BACKGROUND: Atherosclerosis is a common and serious vascular disease predisposing individuals to myocardial infarction and stroke. Intravascular plaques, the pathologic lesions of atherosclerosis, are largely composed of cholesterol-laden luminal macrophage-rich infiltrates within a fibrous cap. The ability to detect those macrophages non-invasively within the aorta, carotid artery and other vessels would allow physicians to determine plaque burden, aiding management of patients with atherosclerosis. METHODS AND RESULTS: We previously developed a low-molecular-weight imaging agent, [(125)I]iodo-DPA-713 (iodoDPA), which selectively targets macrophages. Here we use it to detect both intravascular macrophages and macrophage infiltrates within the myocardium in the ApoE -/- mouse model of atherosclerosis using single photon emission computed tomography (SPECT). SPECT data were confirmed by echocardiography, near-infrared fluorescence imaging and histology. SPECT images showed focal uptake of radiotracer at the aortic root in all ApoE -/- mice, while the age-matched controls were nearly devoid of radiotracer uptake. Focal radiotracer uptake along the descending aorta and within the myocardium was also observed in affected animals. CONCLUSIONS: IodoDPA is a promising new imaging agent for atherosclerosis, with specificity for the macrophage component of the lesions involved.


Asunto(s)
Acetamidas/farmacocinética , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/metabolismo , Macrófagos/diagnóstico por imagen , Macrófagos/metabolismo , Imagen Molecular/métodos , Pirimidinas/farmacocinética , Animales , Apolipoproteínas E/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Radiofármacos/farmacocinética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Tomografía Computarizada de Emisión de Fotón Único/métodos , Vasculitis/diagnóstico por imagen , Vasculitis/metabolismo
16.
Proc Natl Acad Sci U S A ; 109(37): 14767-72, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22927373

RESUMEN

Collagen remodeling is an integral part of tissue development, maintenance, and regeneration, but excessive remodeling is associated with various pathologic conditions. The ability to target collagens undergoing remodeling could lead to new diagnostics and therapeutics as well as applications in regenerative medicine; however, such collagens are often degraded and denatured, making them difficult to target with conventional approaches. Here, we present caged collagen mimetic peptides (CMPs) that can be photo-triggered to fold into triple helix and bind to collagens denatured by heat or by matrix metalloproteinase (MMP) digestion. Peptide-binding assays indicate that the binding is primarily driven by stereo-selective triple-helical hybridization between monomeric CMPs of high triple-helical propensity and denatured collagen strands. Photo-triggered hybridization allows specific staining of collagen chains in protein gels as well as photo-patterning of collagen and gelatin substrates. In vivo experiments demonstrate that systemically delivered CMPs can bind to collagens in bones, as well as prominently in articular cartilages and tumors characterized by high MMP activity. We further show that CMP-based probes can detect abnormal bone growth activity in a mouse model of Marfan syndrome. This is an entirely new way to target the microenvironment of abnormal tissues and could lead to new opportunities for management of numerous pathologic conditions associated with collagen remodeling and high MMP activity.


Asunto(s)
Huesos/patología , Colágeno/fisiología , Síndrome de Marfan/diagnóstico , Modelos Moleculares , Péptidos/metabolismo , Conformación Proteica , Animales , Biomimética , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Dicroismo Circular , Colágeno/metabolismo , Electroforesis en Gel de Poliacrilamida , Técnica del Anticuerpo Fluorescente , Colorantes Fluorescentes , Síndrome de Marfan/fisiopatología , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Estructura Molecular , Péptidos/química , Fotoquímica , Pliegue de Proteína
17.
J Infect Dis ; 208(12): 2067-74, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23901092

RESUMEN

BACKGROUND: Increased expression of translocator protein (TSPO) is a feature of microglial and macrophage activation. Since activated macrophages are key components of tuberculosis-associated inflammation, we evaluated radioiodinated DPA-713, a synthetic ligand of TSPO, for in vivo imaging of host response. METHODS: Mice were infected with aerosolized Mycobacterium tuberculosis and evaluated using whole-body [(125)I]iodo-DPA-713 single-photon emission computed tomography (SPECT). Ex vivo biodistribution and correlative immunofluorescence studies were also performed. RESULTS: [(125)I]Iodo-DPA-713 SPECT imaging clearly delineated tuberculosis-associated pulmonary inflammation in live animals. Biodistribution studies confirmed radiotracer specificity for inflamed pulmonary tissues. Immunofluorescence studies demonstrated that TSPO is highly expressed in CD68(+) macrophages and phagocytic cells within tuberculosis lesions and that [(125)I]DPA-713 specifically accumulates within these cells. Coadministration of excess unlabelled DPA-713 abrogated both the SPECT and ex vivo fluorescence signals. Lesion-specific signal-to-noise ratios were significantly higher with [(125)I]iodo-DPA-713 SPECT (4.06 ± 0.52) versus [(18)F]fluorodeoxyglucose (FDG) positron emission tomography (PET) (2.00 ± 0.28) performed in the same mice (P = .004). CONCLUSIONS: [(125)I]Iodo-DPA-713 accumulates specifically in tuberculosis-associated inflammatory lesions by selective retention within macrophages and phagocytic cells. [(125)I]Iodo-DPA-713 SPECT provides higher lesion-specific signal-to-noise ratios than [(18)F]FDG PET and may prove to be a more specific biomarker to monitor tuberculosis in situ.


Asunto(s)
Acetamidas/química , Pulmón/patología , Imagen Molecular/métodos , Pirazoles/química , Pirimidinas/química , Tomografía Computarizada de Emisión de Fotón Único/métodos , Tuberculosis/patología , Acetamidas/farmacocinética , Animales , Femenino , Granuloma/patología , Macrófagos/química , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Fagocitos/química , Neumonía/patología , Pirazoles/farmacocinética , Pirimidinas/farmacocinética , Receptores de GABA/metabolismo , Distribución Tisular
18.
Int J Nanomedicine ; 19: 4995-5010, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38832336

RESUMEN

Introduction: Prostate cancer (PC) is the second most common cancer and the fifth most frequent cause of cancer death among men. Prostate-specific membrane antigen (PSMA) expression is associated with aggressive PC, with expression in over 90% of patients with metastatic disease. Those characteristics have led to its use for PC diagnosis and therapies with radiopharmaceuticals, antibody-drug conjugates, and nanoparticles. Despite these advancements, none of the current therapeutics are curative and show some degree of toxicity. Here we present the synthesis and preclinical evaluation of a multimodal, PSMA-targeted dendrimer-drug conjugate (PT-DDC), synthesized using poly(amidoamine) (PAMAM) dendrimers. PT-DDC was designed to enable imaging of drug delivery, providing valuable insights to understand and enhance therapeutic response. Methods: The PT-DDC was synthesized through consecutive conjugation of generation-4 PAMAM dendrimers with maytansinoid-1 (DM1) a highly potent antimitotic agent, Cy5 infrared dye for optical imaging, 2,2',2"-(1,4,7-triazacyclononane-1,4,7-triyl)triacetic acid (NOTA) chelator for radiolabeling with copper-64 and positron emission tomography tomography/computed tomography (PET/CT), lysine-urea-glutamate (KEU) PSMA-targeting moiety and the remaining terminal primary amines were capped with butane-1,2-diol. Non-targeted control dendrimer-drug conjugate (Ctrl-DDC) was formulated without conjugation of KEU. PT-DDC and Ctrl-DDC were characterized using high-performance liquid chromatography, matrix assisted laser desorption ionization mass spectrometry and dynamic light scattering. In vitro and in vivo evaluation of PT-DDC and Ctrl-DDC were carried out in isogenic human prostate cancer PSMA+ PC3 PIP and PSMA- PC3 flu cell lines, and in mice bearing the corresponding xenografts. Results: PT-DDC was stable in 1×PBS and human blood plasma and required glutathione for DM1 release. Optical, PET/CT and biodistribution studies confirmed the in vivo PSMA-specificity of PT-DDC. PT-DDC demonstrated dose-dependent accumulation and cytotoxicity in PSMA+ PC3 PIP cells, and also showed growth inhibition of the corresponding tumors. PT-DDC did not accumulate in PSMA- PC3 flu tumors and did not inhibit their growth. Ctrl-DDC did not show PSMA specificity. Conclusion: In this study, we synthesized a multimodal theranostic agent capable of delivering DM1 and a radionuclide to PSMA+ tumors. This approach holds promise for enhancing image-guided treatment of aggressive, metastatic subtypes of prostate cancer.


Asunto(s)
Antígenos de Superficie , Dendrímeros , Glutamato Carboxipeptidasa II , Neoplasias de la Próstata , Dendrímeros/química , Dendrímeros/farmacocinética , Dendrímeros/farmacología , Masculino , Humanos , Glutamato Carboxipeptidasa II/metabolismo , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Antígenos de Superficie/metabolismo , Línea Celular Tumoral , Animales , Ratones , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Sistemas de Liberación de Medicamentos/métodos
19.
medRxiv ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-37398476

RESUMEN

Neuroinflammation through enhanced innate immunity is thought play a role in the pathogenesis of Parkinson's disease (PD). Methods for monitoring neuroinflammation in living patients with PD are currently limited to positron emission tomography (PET) ligands that lack specificity in labeling immune cells in the nervous system. The colony stimulating factor 1 receptor (CSF1R) plays a crucial role in microglial function, an important cellular contributor to the nervous system's innate immune response. Using immunologic methods, we show that CSF1R in human brain is colocalized with the microglial marker, ionized calcium binding adaptor molecule 1 (Iba1). In PD, CSF1R immunoreactivity is significantly increased in PD across multiple brain regions, with the largest differences in the midbrain versus controls. Autoradiography revealed significantly increased [3H]JHU11761 binding in the inferior parietal cortex of PD patients. PET imaging demonstrated that higher [11C]CPPC binding in the striatum was associated with greater motor disability in PD. Furthermore, increased [11C]CPPC binding in various regions correlated with more severe motor disability and poorer verbal fluency. This study finds that CSF1R expression is elevated in PD and that [11C]CPPC-PET imaging of CSF1R is indicative of motor and cognitive impairments in the early stages of the disease. Moreover, the study underscores the significance of CSF1R as a promising biomarker for neuroinflammation in Parkinson's disease, suggesting its potential use for non-invasive assessment of disease progression and severity, leading to earlier diagnosis and targeted interventions.

20.
J Neuroinflammation ; 9: 245, 2012 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-23102113

RESUMEN

BACKGROUND: Transmigration of circulating dendritic cells (DCs) into the central nervous system (CNS) across the blood-brain barrier (BBB) has not thus far been investigated. An increase in immune cell infiltration across the BBB, uncontrolled activation and antigen presentation are influenced by chemokines. Chemokine ligand 2 (CCL2) is a potent chemoattractant known to be secreted by the BBB but has not been implicated in the recruitment of DCs specifically at the BBB. METHODS: Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice by injection of MOG35-55 peptide and pertussis toxin intraperitoneally. Animals with increasing degree of EAE score were sacrificed and subjected to near-infrared and fluorescence imaging analysis to detect and localize the accumulation of CD11c+-labeled DCs with respect to CCL2 expression. To further characterize the direct effect of CCL2 in DC trafficking at the BBB, we utilized an in vitro BBB model consisting of human brain microvascular endothelial cells to compare migratory patterns of monocyte-derived dendritic cells, CD4+ and CD8+ T cells. Further, this model was used to image transmigration using fluorescence microcopy and to assess specific molecular signaling pathways involved in transmigration. RESULTS: Near-infrared imaging of DC transmigration correlated with the severity of inflammation during EAE. Ex vivo histology confirmed the presence of CCL2 in EAE lesions, with DCs emerging from perivascular spaces. DCs exhibited more efficient transmigration than T cells in BBB model studies. These observations correlated with transwell imaging, which indicated a paracellular versus transcellular pattern of migration by DCs and T cells. Moreover, at the molecular level, CCL2 seems to facilitate DC transmigration in an ERK1/2-dependent manner. CONCLUSION: CNS recruitment of DCs correlates with disease severity in EAE via CCL2 chemotaxis and paracellular transmigration across the BBB, which is facilitated by ERK activation. Overall, these comprehensive studies provide a state-of-the-art view of DCs within the CNS, elucidate their path across the BBB, and highlight potential mechanisms involved in CCL2-mediated DC trafficking.


Asunto(s)
Barrera Hematoencefálica/fisiopatología , Movimiento Celular/fisiología , Sistema Nervioso Central/patología , Quimiocina CCL2/metabolismo , Células Dendríticas/fisiología , Encefalomielitis Autoinmune Experimental/patología , MAP Quinasa Quinasa Quinasa 3/metabolismo , Animales , Antígenos CD/metabolismo , Células Dendríticas/patología , Modelos Animales de Enfermedad , Femenino , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Índice de Severidad de la Enfermedad , Espectroscopía Infrarroja Corta , Estadística como Asunto , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA