Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Immunol ; 261: 110165, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38423196

RESUMEN

Mutations in NFkB pathway genes can cause inborn errors of immunity (IEI), with NFKB1 haploinsufficiency being a significant etiology for common variable immunodeficiency (CVID). Indeed, mutations in NFKB1 are found in 4 to 5% of in European and United States CVID cohorts, respectively; CVID representing almost » of IEI patients in European countries registries. This case study presents a 49-year-old patient with respiratory infections, chronic diarrhea, immune thrombocytopenia, hypogammaglobulinemia, and secondary lymphoma. Comprehensive genetic analysis, including high-throughput sequencing of 300 IEI-related genes and copy number variation analysis, identified a critical 2.6-kb deletion spanning the first untranslated exon and its upstream region. The region's importance was confirmed through genetic markers indicative of enhancers and promoters. The deletion was also found in the patient's brother, who displayed similar but milder symptoms. Functional analysis supported haploinsufficiency with reduced mRNA and protein expression in both patients. This case underscores the significance of copy number variation (CNV) analysis and targeting noncoding exons within custom gene panels, emphasizing the broader genomic approaches needed in medical genetics.


Asunto(s)
Inmunodeficiencia Variable Común , Hermanos , Masculino , Adulto , Humanos , Persona de Mediana Edad , Haploinsuficiencia/genética , Variaciones en el Número de Copia de ADN , FN-kappa B/genética , Inmunodeficiencia Variable Común/genética , Secuencias Reguladoras de Ácidos Nucleicos , Subunidad p50 de NF-kappa B/genética
2.
Hum Mol Genet ; 29(6): 907-922, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31985013

RESUMEN

Telomeres are nucleoprotein structures at the end of chromosomes. The telomerase complex, constituted of the catalytic subunit TERT, the RNA matrix hTR and several cofactors, including the H/ACA box ribonucleoproteins Dyskerin, NOP10, GAR1, NAF1 and NHP2, regulates telomere length. In humans, inherited defects in telomere length maintenance are responsible for a wide spectrum of clinical premature aging manifestations including pulmonary fibrosis (PF), dyskeratosis congenita (DC), bone marrow failure and predisposition to cancer. NHP2 mutations have been so far reported only in two patients with DC. Here, we report the first case of Høyeraal-Hreidarsson syndrome, the severe form of DC, caused by biallelic missense mutations in NHP2. Additionally, we identified three unrelated patients with PF carrying NHP2 heterozygous mutations. Strikingly, one of these patients acquired a somatic mutation in the promoter of TERT that likely conferred a selective advantage in a subset of blood cells. Finally, we demonstrate that a functional deficit of human NHP2 affects ribosomal RNA biogenesis. Together, our results broaden the functional consequences and clinical spectrum of NHP2 deficiency.


Asunto(s)
Disqueratosis Congénita/patología , Retardo del Crecimiento Fetal/patología , Discapacidad Intelectual/patología , Microcefalia/patología , Mutación , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Fibrosis Pulmonar/patología , ARN Ribosómico/biosíntesis , Ribonucleoproteínas Nucleares Pequeñas/deficiencia , Ribonucleoproteínas Nucleares Pequeñas/genética , Anciano , Secuencia de Aminoácidos , Disqueratosis Congénita/etiología , Femenino , Retardo del Crecimiento Fetal/etiología , Humanos , Recién Nacido , Discapacidad Intelectual/etiología , Masculino , Microcefalia/etiología , Persona de Mediana Edad , Proteínas Nucleares/química , Linaje , Regiones Promotoras Genéticas , Fibrosis Pulmonar/etiología , Ribonucleoproteínas Nucleares Pequeñas/química , Homología de Secuencia , Telomerasa/genética , Transcripción Genética
3.
Respirology ; 27(3): 226-235, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34981600

RESUMEN

BACKGROUND AND OBJECTIVE: Poly(A)-specific ribonuclease (PARN) mutations have been associated with familial pulmonary fibrosis. This study aims to describe the phenotype of patients with interstitial lung disease (ILD) and heterozygous PARN mutations. METHODS: We performed a retrospective, observational, non-interventional study of patients with an ILD diagnosis and a pathogenic heterozygous PARN mutation followed up in a centre of the OrphaLung network. RESULTS: We included 31 patients (29 from 16 kindreds and two sporadic patients). The median age at ILD diagnosis was 59 years (range 54 to 63). In total, 23 (74%) patients had a smoking history and/or fibrogenic exposure. The pulmonary phenotypes were heterogenous, but the most frequent diagnosis was idiopathic pulmonary fibrosis (n = 12, 39%). Haematological abnormalities were identified in three patients and liver disease in two. In total, 21 patients received a specific treatment for ILD: steroids (n = 13), antifibrotic agents (n = 11), immunosuppressants (n = 5) and N-acetyl cysteine (n = 2). The median forced vital capacity decline for the whole sample was 256 ml/year (range -363 to -148). After a median follow-up of 32 months (range 18 to 66), 10 patients had died and six had undergone lung transplantation. The median transplantation-free survival was 54 months (95% CI 29 to ∞). Extra-pulmonary features were less frequent with PARN mutation than telomerase reverse transcriptase (TERT) or telomerase RNA component (TERC) mutation. CONCLUSION: IPF is common among individuals with PARN mutation, but other ILD subtypes may be observed.


Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Exorribonucleasas , Humanos , Fibrosis Pulmonar Idiopática/genética , Enfermedades Pulmonares Intersticiales/genética , Mutación/genética , Estudios Retrospectivos
4.
Blood ; 134(1): 9-21, 2019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-30940614

RESUMEN

Evans syndrome (ES) is a rare severe autoimmune disorder characterized by the combination of autoimmune hemolytic anemia and immune thrombocytopenia. In most cases, the underlying cause is unknown. We sought to identify genetic defects in pediatric ES (pES), based on a hypothesis of strong genetic determinism. In a national, prospective cohort of 203 patients with early-onset ES (median [range] age at last follow-up: 16.3 years ([1.2-41.0 years]) initiated in 2004, 80 nonselected consecutive individuals underwent genetic testing. The clinical data were analyzed as a function of the genetic findings. Fifty-two patients (65%) received a genetic diagnosis (the M+ group): 49 carried germline mutations and 3 carried somatic variants. Thirty-two (40%) had pathogenic mutations in 1 of 9 genes known to be involved in primary immunodeficiencies (TNFRSF6, CTLA4, STAT3, PIK3CD, CBL, ADAR1, LRBA, RAG1, and KRAS), whereas 20 patients (25%) carried probable pathogenic variants in 16 genes that had not previously been reported in the context of autoimmune disease. Lastly, no genetic abnormalities were found in the remaining 28 patients (35%, the M- group). The M+ group displayed more severe disease than the M- group, with a greater frequency of additional immunopathologic manifestations and a greater median number of lines of treatment. Six patients (all from the M+ group) died during the study. In conclusion, pES was potentially genetically determined in at least 65% of cases. Systematic, wide-ranging genetic screening should be offered in pES; the genetic findings have prognostic significance and may guide the choice of a targeted treatment.


Asunto(s)
Anemia Hemolítica Autoinmune/genética , Anemia Hemolítica Autoinmune/inmunología , Trombocitopenia/genética , Trombocitopenia/inmunología , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Masculino , Mutación , Adulto Joven
5.
Nephrol Dial Transplant ; 34(11): 1885-1893, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29992269

RESUMEN

BACKGROUND: Apolipoprotein L1 (APOL1) risk variants are strongly associated with sporadic focal segmental glomerulosclerosis (FSGS) in populations with African ancestry. We determined the frequency of G1/G2 variants in steroid-resistant nephrotic syndrome (SRNS)/FSGS patients with African or French West Indies ancestry in France and its relationships with other SRNS genes. METHODS: In a cohort of 152 patients (139 families), the APOL1 risk variants were genotyped by direct Sanger sequencing and pathogenic mutations were screened by next-generation sequencing with a panel including 35 SRNS genes. RESULTS: The two risk allele [high-risk (HR)] genotypes were found in 43.1% (66/152) of subjects compared with 18.9% (106/562) in a control population (P < 0.0001): 33 patients homozygous for APOL1 G1 alleles, 4 homozygous for G2 and 29 compound heterozygous for G1 and G2. Compared with patients in the low-risk (LR) group, patients in the HR group were more likely to originate from the French West Indies than from Africa [45/66 (68.2%) versus 30/86 (34.9%); P < 0.0001]. There were more familial cases in the HR group [27 (41.5%) versus 8 (11.4%); P < 0.0001]. However, causative mutations in monogenic SRNS genes were found in only 1 patient in the HR group compared with 16 patients (14 families) in the LR group (P = 0.0006). At diagnosis, patients in the HR group without other mutations were more often adults [35 (53.8%) versus 19 (27.1%); P = 0.003] and had a lower estimated glomerular filtration rate (78.9 versus 98.8 mL/min/1.73 m2; P = 0.02). CONCLUSIONS: The HR genotype is frequent in FSGS patients with African ancestry in our cohort, especially in those originating from the West Indies, and confer a poor renal prognosis. It is usually not associated with other causative mutations in monogenic SRNS genes.


Asunto(s)
Apolipoproteína L1/genética , Población Negra/genética , Resistencia a Medicamentos , Predisposición Genética a la Enfermedad , Glomeruloesclerosis Focal y Segmentaria/genética , Mutación , Síndrome Nefrótico/genética , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Estudios de Cohortes , Femenino , Francia/epidemiología , Genotipo , Glomeruloesclerosis Focal y Segmentaria/diagnóstico , Glomeruloesclerosis Focal y Segmentaria/etnología , Homocigoto , Humanos , Masculino , Síndrome Nefrótico/diagnóstico , Síndrome Nefrótico/etnología , Linaje , Pronóstico , Factores de Riesgo , Esteroides/farmacología , Tasa de Supervivencia , Adulto Joven
6.
J Cell Sci ; 129(7): 1490-9, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26906413

RESUMEN

The sarcoplasmic reticulum is a network of tubules and cisternae localized in close association with the contractile apparatus, and regulates Ca(2+)dynamics within striated muscle cell. The sarcoplasmic reticulum maintains its shape and organization despite repeated muscle cell contractions, through mechanisms which are still under investigation. The ESCRT complexes are essential to organize membrane subdomains and modify membrane topology in multiple cellular processes. Here, we report for the first time that ESCRT-II proteins play a role in the maintenance of sarcoplasmic reticulum integrity inC. elegans ESCRT-II proteins colocalize with the sarcoplasmic reticulum marker ryanodine receptor UNC-68. The localization at the sarcoplasmic reticulum of ESCRT-II and UNC-68 are mutually dependent. Furthermore, the characterization of ESCRT-II mutants revealed a fragmentation of the sarcoplasmic reticulum network, associated with an alteration of Ca(2+)dynamics. Our data provide evidence that ESCRT-II proteins are involved in sarcoplasmic reticulum shaping.


Asunto(s)
Caenorhabditis elegans/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Células Musculares/metabolismo , Contracción Muscular/fisiología , Retículo Sarcoplasmático/metabolismo , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
7.
J Med Genet ; 54(5): 324-329, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28069933

RESUMEN

BACKGROUND: While mitochondrial DNA (mtDNA) copy number is strictly regulated during differentiation and according to cell type, very little is known regarding the mechanism which accurately controls mtDNA copy number in human. Exon 2 of the human POLG gene, encoding the catalytic subunit of the mitochondrial-specific DNA polymerase gamma, contains a CpG island, highly conserved in mice and human. Changes of DNA methylation at the POLG locus have been shown to modulate mtDNA copy number during cell differentiation in both mouse and human. METHODS: We have investigated the epigenetic modification of the POLG gene, by assessing the methylation level of its exon 2 using deep-Next Generation Sequencing analysis of bisulfite-treated DNA. Analysis were performed on various tissues at either postnatal or prenatal stages, on samples from carriers of mtDNA mutations, patients carrying two loss-of-function POLG mutations and controls. RESULTS: Very high methylation levels at POLG exon 2 were found (94±3%) and no variation was observed according to either developmental stage or tissue of origin, except for sperm samples for which lower methylation levels were found (80%). This high level of methylation was neither correlated with the presence of mtDNA mutations (94±1% of methylated alleles), nor with biallelic POLG mutations (93%±2%), even in tissues where a mtDNA depletion had been observed. CONCLUSIONS: This study suggests that, at variance with mouse and un/de-differentiated human cells, differentiated human cells control mtDNA levels irrespective of POLG methylation. The factors which actually control the mtDNA levels in such cell types remain to be identified.


Asunto(s)
Diferenciación Celular/genética , Islas de CpG/genética , Metilación de ADN/genética , ADN Polimerasa gamma/genética , ADN Mitocondrial/genética , Exones/genética , Mutación/genética , Adolescente , Adulto , Animales , Secuencia de Bases , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Ratones , Persona de Mediana Edad , Embarazo , Adulto Joven
8.
J Am Soc Nephrol ; 28(10): 2901-2914, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28566479

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) occur in three to six of 1000 live births, represent about 20% of the prenatally detected anomalies, and constitute the main cause of CKD in children. These disorders are phenotypically and genetically heterogeneous. Monogenic causes of CAKUT in humans and mice have been identified. However, despite high-throughput sequencing studies, the cause of the disease remains unknown in most patients, and several studies support more complex inheritance and the role of environmental factors and/or epigenetics in the pathophysiology of CAKUT. Here, we report the targeted exome sequencing of 330 genes, including genes known to be involved in CAKUT and candidate genes, in a cohort of 204 unrelated patients with CAKUT; 45% of the patients were severe fetal cases. We identified pathogenic mutations in 36 of 204 (17.6%) patients. These mutations included five de novo heterozygous loss of function mutations/deletions in the PBX homeobox 1 gene (PBX1), a gene known to have a crucial role in kidney development. In contrast, the frequency of SOX17 and DSTYK variants recently reported as pathogenic in CAKUT did not indicate causality. These findings suggest that PBX1 is involved in monogenic CAKUT in humans and call into question the role of some gene variants recently reported as pathogenic in CAKUT. Targeted exome sequencing also proved to be an efficient and cost-effective strategy to identify pathogenic mutations and deletions in known CAKUT genes.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas Proto-Oncogénicas/genética , Anomalías Urogenitales/genética , Estudios de Cohortes , Análisis Mutacional de ADN , Exoma , Femenino , Humanos , Masculino , Factor de Transcripción 1 de la Leucemia de Células Pre-B
9.
Neurogenetics ; 18(2): 73-79, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27747449

RESUMEN

Kinesins play a critical role in the organization and dynamics of the microtubule cytoskeleton, making them central players in neuronal proliferation, neuronal migration, and postmigrational development. Recently, KIF2A mutations were identified in cortical malformation syndromes associated with microcephaly. Here, we detected two de novo p.Ser317Asn and p.His321Pro mutations in KIF2A in two patients with lissencephaly and microcephaly. In parallel, we re-evaluated the two previously reported cases showing de novo mutations of the same residues. The identification of mutations only in the residues Ser317 and His321 suggests these are hotspots for de novo mutations. Both mutations lead to a classic form of lissencephaly, with a posterior to anterior gradient, almost indistinguishable from LIS1-related lissencephaly. However, three fourths of patients also showed variable congenital and postnatal microcephaly, up to -5 SD. Located in the motor domain of the KIF2A protein, the Ser317 and His321 alterations are expected to disrupt binding or hydrolysis of ATP and consequently the MT depolymerizing activity. This report also establishes that KIF2A mutations represent significant causes of classic lissencephaly with microcephaly.


Asunto(s)
Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/genética , Cinesinas/genética , Mutación Missense , Adolescente , Análisis Mutacional de ADN , Femenino , Frecuencia de los Genes , Humanos , Lactante , Lisencefalia/genética , Masculino , Polimorfismo de Nucleótido Simple
10.
J Am Soc Nephrol ; 27(1): 63-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25967120

RESUMEN

Hereditary defects of coenzyme Q10 biosynthesis cause steroid-resistant nephrotic syndrome (SRNS) as part of multiorgan involvement but may also contribute to isolated SRNS. Here, we report 26 patients from 12 families with recessive mutations in ADCK4. Mutation detection rate was 1.9% among 534 consecutively screened cases. Patients with ADCK4 mutations showed a largely renal-limited phenotype, with three subjects exhibiting occasional seizures, one subject exhibiting mild mental retardation, and one subject exhibiting retinitis pigmentosa. ADCK4 nephropathy presented during adolescence (median age, 14.1 years) with nephrotic-range proteinuria in 44% of patients and advanced CKD in 46% of patients at time of diagnosis. Renal biopsy specimens uniformly showed FSGS. Whereas 47% and 36% of patients with mutations in WT1 and NPHS2, respectively, progressed to ESRD before 10 years of age, ESRD occurred almost exclusively in the second decade of life in ADCK4 nephropathy. However, CKD progressed much faster during adolescence in ADCK4 than in WT1 and NPHS2 nephropathy, resulting in similar cumulative ESRD rates (>85% for each disorder) in the third decade of life. In conclusion, ADCK4-related glomerulopathy is an important novel differential diagnosis in adolescents with SRNS/FSGS and/or CKD of unknown origin.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria/genética , Mutación , Proteínas Quinasas/genética , Adolescente , Edad de Inicio , Niño , Preescolar , Humanos , Lactante
11.
J Allergy Clin Immunol ; 147(2): 734-737, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32531373
13.
Mol Genet Genomic Med ; 11(9): e2219, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37353886

RESUMEN

INTRODUCTION: CREBBP truncating mutations and deletions are responsible for the well-known Rubinstein-Taybi syndrome. Recently, a new, distinct CREBBP-linked syndrome has been described: missense mutations located at the 3' end of exon 30 and the 5' portion of exon 31 induce Menke-Hennekam syndrome. Patients with this syndrome present a recognizable facial dysmorphism, intellectual disability of variable severity, microcephaly, short stature, autism, epilepsy, visual and hearing impairments, feeding problems, upper airway infections, scoliosis, and/or kyphosis. To date, all diagnoses were made postnatally. METHOD AND CASE REPORT: Trio-whole exome sequencing (WES) was performed in a fetus showing increased nuchal translucency persistence and aorta abnormalities at 28 weeks of gestation (WG). RESULTS: WES revealed a CREBBP de novo missense mutation (c.5602C>T; p.Arg1868Trp) in exon 31, previously reported as the cause of Menke-Hennekam syndrome. Termination of pregnancy was performed at 32 WG. We further reviewed the prenatal signs of Menke-Hennekam syndrome already reported. Among the 35 patients reported and diagnosed postnatally up to this day, 15 presented recognizable prenatal signs, the most frequent being intra-uterine growth retardation, brain, and cardiovascular anomalies. CONCLUSION: Menke-Hennekam is a rare syndrome with unspecific, heterogeneous, and inconstant prenatal symptoms occurring most frequently with the c.5602C>T, p.(Arg1868Trp) mutation. Therefore, the prenatal diagnosis of Menke-Hennekam syndrome is only possible by molecular investigation. Moreover, this case report and review reinforce the importance of performing prenatal WES when unspecific signs are present on imaging.


Asunto(s)
Síndrome del Pelo Ensortijado , Síndrome de Rubinstein-Taybi , Embarazo , Femenino , Humanos , Fenotipo , Secuenciación del Exoma , Mutación , Síndrome de Rubinstein-Taybi/genética , Mutación Missense
14.
Genes (Basel) ; 12(2)2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670832

RESUMEN

Leber congenital amaurosis (LCA) encompasses the earliest and most severe retinal dystrophies and can occur as a non-syndromic or a syndromic disease. Molecular diagnosis in LCA is of particular importance in clinical decision-making and patient care since it can provide ocular and extraocular prognostics and identify patients eligible to develop gene-specific therapies. Routine high-throughput molecular testing in LCA yields 70%-80% of genetic diagnosis. In this study, we aimed to investigate the non-coding regions of one non-syndromic LCA gene, RPGRIP1, in a series of six families displaying one single disease allele after a gene-panel screening of 722 LCA families which identified 26 biallelic RPGRIP1 families. Using trio-based high-throughput whole locus sequencing (WLS) for second disease alleles, we identified a founder deep intronic mutation (NM_020366.3:c.1468-128T>G) in 3/6 families. We employed Sanger sequencing to search for the pathologic variant in unresolved LCA cases (106/722) and identified three additional families (two homozygous and one compound heterozygous with the NM_020366.3:c.930+77A>G deep intronic change). This makes the c.1468-128T>G the most frequent RPGRIP1 disease allele (8/60, 13%) in our cohort. Studying patient lymphoblasts, we show that the pathologic variant creates a donor splice-site and leads to the insertion of the pseudo-exon in the mRNA, which we were able to hamper using splice-switching antisense oligonucleotides (AONs), paving the way to therapies.


Asunto(s)
Proteínas del Citoesqueleto/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Amaurosis Congénita de Leber/genética , Distrofias Retinianas/genética , Adolescente , Adulto , Alelos , Niño , Preescolar , Análisis Mutacional de ADN , Exones , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Intrones/genética , Amaurosis Congénita de Leber/patología , Masculino , Mutación/genética , Patología Molecular , Linaje , Distrofias Retinianas/patología , Adulto Joven
15.
Front Endocrinol (Lausanne) ; 11: 545339, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33692749

RESUMEN

Objective: To elucidate the molecular cause in a well-characterized cohort of patients with Congenital Hypothyroidism (CH) and Dyshormonogenesis (DH) by using targeted next-generation sequencing (TNGS). Study design: We studied 19 well-characterized patients diagnosed with CH and DH by targeted NGS including genes involved in thyroid hormone production. The pathogenicity of novel mutations was assessed based on in silico prediction tool results, functional studies when possible, variant location in important protein domains, and a review of the recent literature. Results: TNGS with variant prioritization and detailed assessment identified likely disease-causing mutations in 10 patients (53%). Monogenic defects most often involved TG, followed by DUOXA2, DUOX2, and NIS and were usually homozygous or compound heterozygous. Our review shows the importance of the detailed phenotypic description of patients and accurate analysis of variants to provide a molecular diagnosis. Conclusions: In a clinically well-characterized cohort, TNGS had a diagnostic yield of 53%, in accordance with previous studies using a similar strategy. TG mutations were the most common genetic defect. TNGS identified gene mutations causing DH, thereby providing a rapid and cost-effective genetic diagnosis in patients with CH due to DH.


Asunto(s)
Hipotiroidismo Congénito/diagnóstico , Hipotiroidismo Congénito/genética , Adolescente , Adulto , Niño , Preescolar , Hipotiroidismo Congénito/fisiopatología , Oxidasas Duales/genética , Femenino , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Mutación , Linaje , Simportadores/genética , Hormonas Tiroideas/genética , Hormonas Tiroideas/metabolismo , Adulto Joven
16.
Leukemia ; 34(7): 1730-1740, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31992840

RESUMEN

The prognostic value of IL7-receptor pathway (IL7Rp) mutations in T-cell acute lymphoblastic leukemia (T-ALL) remains unclear. We performed a comprehensive study of 200 adult patients with T-ALL included in the GRAALL2003/2005 protocols to address the clinical significance of IL7Rp mutations. Next-generation sequencing of the IL7Rp (IL7R/JAK1/JAK3/STAT5B) revealed that IL7Rp mutations were frequent in adult T-ALL (28%) particularly in immature/early T-cell progenitor (ETP)-ALL. They were associated with mutations of NOTCH-pathway, PHF6, and PRC2 components but not with K/NRAS. IL7Rp mutated (IL7Rpmut) T-ALL were slow-responders, with a high rate of M2/M3 day-8 marrow compared with IL7Rp non-mutated (IL7RpWT) T-ALL (p = 0.002) and minimal residual disease positivity at 6-weeks (MRD1) (p = 0.008) but no difference in MRD2 positivity at 12-weeks. Despite this, no adverse prognosis was evidenced when censored for allogeneic hematopoietic stem cell transplantation (HSCT). In time-dependent analysis, HSCT did not benefit IL7Rpmut patients whereas it was of marked benefit to IL7RpWT cases. IL7Rp-mutations identify a subgroup of slow-responder T-ALLs which benefit from post-induction chemotherapy regimens but not from HSCT. Our data suggest that prior knowledge of the mutation status of IL7Rp may influence HSCT decision and help to guide therapy reduction.


Asunto(s)
Biomarcadores de Tumor/genética , Trasplante de Células Madre Hematopoyéticas/mortalidad , Mutación , Neoplasia Residual/patología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Receptores de Interleucina-7/genética , Adolescente , Adulto , Femenino , Estudios de Seguimiento , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Neoplasia Residual/genética , Neoplasia Residual/terapia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Pronóstico , Tasa de Supervivencia , Trasplante Homólogo , Adulto Joven
17.
Nat Ecol Evol ; 3(5): 801-810, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30858591

RESUMEN

Jellyfish (medusae) are a distinctive life-cycle stage of medusozoan cnidarians. They are major marine predators, with integrated neurosensory, muscular and organ systems. The genetic foundations of this complex form are largely unknown. We report the draft genome of the hydrozoan jellyfish Clytia hemisphaerica and use multiple transcriptomes to determine gene use across life-cycle stages. Medusa, planula larva and polyp are each characterized by distinct transcriptome signatures reflecting abrupt life-cycle transitions and all deploy a mixture of phylogenetically old and new genes. Medusa-specific transcription factors, including many with bilaterian orthologues, associate with diverse neurosensory structures. Compared to Clytia, the polyp-only hydrozoan Hydra has lost many of the medusa-expressed transcription factors, despite similar overall rates of gene content evolution and sequence evolution. Absence of expression and gene loss among Clytia orthologues of genes patterning the anthozoan aboral pole, secondary axis and endomesoderm support simplification of planulae and polyps in Hydrozoa, including loss of bilateral symmetry. Consequently, although the polyp and planula are generally considered the ancestral cnidarian forms, in Clytia the medusa maximally deploys the ancestral cnidarian-bilaterian transcription factor gene complement.


Asunto(s)
Hidrozoos , Animales , Evolución Molecular , Genoma
18.
Sci Immunol ; 4(42)2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31836668

RESUMEN

Excessive type I interferon (IFNα/ß) activity is implicated in a spectrum of human disease, yet its direct role remains to be conclusively proven. We investigated two siblings with severe early-onset autoinflammatory disease and an elevated IFN signature. Whole-exome sequencing revealed a shared homozygous missense Arg148Trp variant in STAT2, a transcription factor that functions exclusively downstream of innate IFNs. Cells bearing STAT2R148W in homozygosity (but not heterozygosity) were hypersensitive to IFNα/ß, which manifest as prolonged Janus kinase-signal transducers and activators of transcription (STAT) signaling and transcriptional activation. We show that this gain of IFN activity results from the failure of mutant STAT2R148W to interact with ubiquitin-specific protease 18, a key STAT2-dependent negative regulator of IFNα/ß signaling. These observations reveal an essential in vivo function of STAT2 in the regulation of human IFNα/ß signaling, providing concrete evidence of the serious pathological consequences of unrestrained IFNα/ß activity and supporting efforts to target this pathway therapeutically in IFN-associated disease.


Asunto(s)
Enfermedades del Sistema Inmune/genética , Interferón Tipo I/inmunología , Factor de Transcripción STAT2/genética , Mutación de Línea Germinal , Humanos , Enfermedades del Sistema Inmune/inmunología , Lactante , Masculino , Transducción de Señal
19.
JAMA Neurol ; 75(10): 1234-1245, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29913018

RESUMEN

Importance: Movement disorders are characterized by a marked genotypic and phenotypic heterogeneity, complicating diagnostic work in clinical practice and molecular diagnosis. Objective: To develop and evaluate a targeted sequencing approach using a customized panel of genes involved in movement disorders. Design, Setting and Participants: We selected 127 genes associated with movement disorders to create a customized enrichment in solution capture array. Targeted high-coverage sequencing was applied to DNA samples taken from 378 eligible patients at 1 Luxembourgian, 1 Algerian, and 25 French tertiary movement disorder centers between September 2014 and July 2016. Patients were suspected of having inherited movement disorders because of early onset, family history, and/or complex phenotypes. They were divided in 5 main movement disorder groups: parkinsonism, dystonia, chorea, paroxysmal movement disorder, and myoclonus. To compare approaches, 23 additional patients suspected of having inherited cerebellar ataxia were included, on whom whole-exome sequencing (WES) was done. Data analysis occurred from November 2015 to October 2016. Main Outcomes and Measures: Percentages of individuals with positive diagnosis, variants of unknown significance, and negative cases; mutational frequencies and clinical phenotyping of genes associated with movement disorders. Results: Of the 378 patients (of whom 208 were male [55.0%]), and with a median (range) age at disease onset of 31 (0-84) years, probable pathogenic variants were identified in 83 cases (22.0%): 46 patients with parkinsonism (55% of 83 patients), 21 patients (25.3%) with dystonia, 7 patients (8.4%) with chorea, 7 patients (8.4%) with paroxysmal movement disorders, and 2 patients (2.4%) with myoclonus as the predominant phenotype. Some genes were mutated in several cases in the cohort. Patients with pathogenic variants were significantly younger (median age, 27 years; interquartile range [IQR], 5-36 years]) than the patients without diagnosis (median age, 35 years; IQR, 15-46 years; P = .04). Diagnostic yield was significantly lower in patients with dystonia (21 of 135; 15.6%; P = .03) than in the overall cohort. Unexpected genotype-phenotype correlations in patients with pathogenic variants deviating from the classic phenotype were highlighted, and 49 novel probable pathogenic variants were identified. The WES analysis of the cohort of 23 patients with cerebellar ataxia led to an overall diagnostic yield of 26%, similar to panel analysis but at a cost 6 to 7 times greater. Conclusions and Relevance: High-coverage sequencing panel for the delineation of genes associated with movement disorders was efficient and provided a cost-effective diagnostic alternative to whole-exome and whole-genome sequencing.


Asunto(s)
Secuenciación del Exoma/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Trastornos del Movimiento/diagnóstico , Trastornos del Movimiento/genética , Análisis de Secuencia de ADN/métodos , Adolescente , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Ataxia Cerebelosa/genética , Niño , Preescolar , Corea/diagnóstico , Corea/genética , Trastornos Distónicos/genética , Femenino , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento/economía , Humanos , Lactante , Masculino , Persona de Mediana Edad , Mioclonía/diagnóstico , Mioclonía/genética , Trastornos Parkinsonianos/genética , Fenotipo , Estudios Prospectivos , Análisis de Secuencia de ADN/economía , Secuenciación del Exoma/economía , Adulto Joven
20.
J Crohns Colitis ; 12(9): 1104-1112, 2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-29788237

RESUMEN

BACKGROUND AND AIMS: An expanding number of monogenic defects have been identified as causative of severe forms of very early-onset inflammatory bowel diseases [VEO-IBD]. The present study aimed at defining how next-generation sequencing [NGS] methods can be used to improve identification of known molecular diagnosis and to adapt treatment. METHODS: A total of 207 children were recruited in 45 paediatric centres through an international collaborative network [ESPGHAN GENIUS working group] with a clinical presentation of severe VEO-IBD [n = 185] or an anamnesis suggestive of a monogenic disorder [n = 22]. Patients were divided at inclusion into three phenotypic subsets: predominantly small bowel inflammation, colitis with perianal lesions, and colitis only. Methods to obtain molecular diagnosis included functional tests followed by specific Sanger sequencing, custom-made targeted NGS, and in selected cases whole exome sequencing [WES] of parents-child trios. Genetic findings were validated clinically and/or functionally. RESULTS: Molecular diagnosis was achieved in 66/207 children [32%]: 61% with small bowel inflammation, 39% with colitis and perianal lesions, and 18% with colitis only. Targeted NGS pinpointed gene mutations causative of atypical presentations, and identified large exonic copy number variations previously missed by WES. CONCLUSIONS: Our results lead us to propose an optimised diagnostic strategy to identify known monogenic causes of severe IBD.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades Inflamatorias del Intestino/diagnóstico , Enfermedades Inflamatorias del Intestino/etiología , Adolescente , Edad de Inicio , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Lactante , Enfermedades Inflamatorias del Intestino/terapia , Masculino , Valor Predictivo de las Pruebas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA