Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Heliyon ; 10(11): e31796, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38845917

RESUMEN

Plastic pollution is a worldwide problem especially in the marine environment. Plastic items once fragmented into microplastics (MPs), can be captured by different marine species. Benthic filter feeders like sponges and polychaetas, due to their trophic strategy, are highly exposed to MPs pollution. Herein a simple but effective method to digest the fan worm Sabella spallanzanii and the calcareous sponge Paraleucilla magna is presented: a solution with KOH and H2O2 was able to remove quantitatively (more than 98 %) the organic matter in 3 h while an acid treatment dissolved most of spicules and chaetes in less than 30 min. MPs were easily identified both microscopically and spectroscopically on filters. Quantification in animals collected from the same environment showed that, on average, sponges accumulate fewer MPs than polychaetes (66 ± 31 and 117 ± 46 particles/g dry weight, respectively). The plastic recovery of the method was validated using three different approaches (spiking of standard PS microspheres, of common-use plastic objects, and of microplastics already weathered in marine environment). This procedure can make it easier and cost-effective to process biota in monitoring studies, providing information about bioindicator/bioremediation species.

2.
Mar Pollut Bull ; 188: 114613, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36682304

RESUMEN

Microplastics (MPs) are a serious threat to the marine environment affecting ecosystem functioning and biodiversity. There is a vast literature about the uptake of MPs at different trophic levels, mainly focused on ecotoxicological effects in commercially relevant species. Little is still known about possible strategies to face MP pollution. Bioremediation is recently gaining attention in this framework. The clearance rate and particle retention of Sabella spallanzanii, Mytilus galloprovincialis, Phallusia mammillata, Paraleucilla magna at three MP concentrations (C1: 1.4 · 101 p/L; C2: 1.4 · 102 p/L; C3: 1.4 · 103 p/L) were investigated to test their potential as MP remover. Digestion protocol removed 98 % of tissues simplifying the MP quantification. P. magna clearance rate decreased with increasing concentration while P. mammillata showed no significant variations. S. spallanzanii and M. galloprovincialis instead exhibited the highest values of clearance rate. Yet, unlike mussels, S. spallanzanii can inhibit particle return to the surrounding water storing them in the tube, resulting to be the best candidate for bioremediation purposes.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Plásticos , Ecosistema , Mar Mediterráneo , Contaminantes Químicos del Agua/análisis , Italia , Monitoreo del Ambiente
3.
Mar Pollut Bull ; 177: 113551, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35314395

RESUMEN

This study deals with the issue of beach litter pollution in the context of the Descriptor 10 of the Marine Strategy Framework Directive Good Environmental Status of EU waters and Ecological objective 10, Common indicator 22 of IMAP. Analyses of the amount, distribution and categorization of beach litter were conducted on nine beaches during 108 surveys covering the area of 206.620 m2 in Albania, Italy and Montenegro. Our findings showed that the level of beach litter pollution on south Adriatic beaches is significantly above the adopted threshold values, with a median item numbers of 327, 258 and 234 per 100 m of beach stretch for Albania, Italy and Montenegro, respectively. It can be concluded that, when it comes to beach litter pollution, GES has not been achieved. Given the defined baseline and threshold values at the EU level, the process of reducing the total amount of marine litter in southern Adriatic Sea will be very challenging and needs urgent and specific actions.


Asunto(s)
Playas , Plásticos , Monitoreo del Ambiente , Contaminación Ambiental/análisis , Plásticos/análisis , Residuos/análisis
4.
Mar Pollut Bull ; 173(Pt A): 112931, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34534932

RESUMEN

Over the last few years, different digestion protocols have been proposed to extract microplastics from mussels, an important product from aquaculture and a relevant economic resource, always scrutinized as a potential pollutant concentrator. In this study, a full factorial experimental design technique has been employed to achieve efficiency in removing biological materials while maximizing the recoveries of five common microplastics (polyethylene, polystyrene, polyethylene terephthalate, polypropylene and polyamide). A robust setpoint was calculated, 2.5% potassium hydroxide at 60 °C for 3 h with 5% hydrogen peroxide and 2.7% of methanol, permitting the quantitative digestion of mussel tissues and recovery of microplastics. These experimental conditions were successfully used to digest whole mussels bought from a local market, which possess high levels of microplastic contamination (41 items/g dry weight). The results highlight the importance of optimizing protocols to develop robust, easy to use and cheap quantitative approaches for analysing microplastic accumulation in edible organisms.


Asunto(s)
Bivalvos , Contaminantes Químicos del Agua , Animales , Digestión , Monitoreo del Ambiente , Indicadores y Reactivos , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA