Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Mater ; 12(4): 299-303, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23377291

RESUMEN

Perpendicularly magnetized materials have attracted significant interest owing to their high anisotropy, which gives rise to extremely narrow, nanosized domain walls. As a result, the recently studied current-induced domain wall motion (CIDWM) in these materials promises to enable a new class of data, memory and logic devices. Here we propose the spin Hall effect as an alternative mechanism for CIDWM. We are able to carefully tune the net spin Hall current in depinning experiments on Pt/Co/Pt nanowires, offering unique control over CIDWM. Furthermore, we determine that the depinning efficiency is intimately related to the internal structure of the domain wall, which we control by the application of small fields along the nanowire. This manifestation of CIDWM offers an attractive degree of freedom for manipulating domain wall motion by charge currents, and sheds light on the existence of contradicting reports on CIDWM in perpendicularly magnetized materials.

2.
Phys Rev Lett ; 108(3): 037205, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22400781

RESUMEN

Despite the relevance of current-induced magnetic domain wall (DW) motion for new spintronics applications, the exact details of the current-domain wall interaction are not yet understood. A property intimately related to this interaction is the intrinsic DW resistivity. Here, we investigate experimentally how the resistivity inside a DW depends on the wall width Δ, which is tuned using focused ion beam irradiation of Pt/Co/Pt strips. We observe the nucleation of individual DWs with Kerr microscopy, and measure resistance changes in real time. A 1/Δ(2) dependence of DW resistivity is found, compatible with Levy-Zhang theory. Also quantitative agreement with theory is found by taking full account of the current flowing through each individual layer inside the multilayer stack.

3.
Sci Rep ; 4: 5248, 2014 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-24919162

RESUMEN

Magnetic domain-walls (DWs) with a preferred chirality exhibit very efficient current-driven motion. Since structural inversion asymmetry (SIA) is required for their stability, the observation of chiral domain walls in highly symmetric Pt/Co/Pt is intriguing. Here, we tune the layer asymmetry in this system and observe, by current-assisted DW depinning experiments, a small chiral field which sensitively changes. Moreover, we convincingly link the observed efficiency of DW motion to the DW texture, using DW resistance as a direct probe for the internal orientation of the DW under the influence of in-plane fields. The very delicate effect of capping layer thickness on the chiral field allows for its accurate control, which is important in designing novel materials for optimal spin-orbit-torque-driven DW motion.

4.
Nat Nanotechnol ; 7(8): 499-503, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22796743

RESUMEN

The movement of magnetic domain walls can be used to build a device known as a shift register, which has applications in memory and logic circuits. However, the application of magnetic domain wall shift registers has been hindered by geometrical restrictions, by randomness in domain wall displacement and by the need for high current densities or rotating magnetic fields. Here, we propose a new approach in which the energy landscape experienced by the domain walls is engineered to favour a unidirectional ratchet-like propagation. The domain walls are defined between domains with an out-of-plane (perpendicular) magnetization, which allows us to route domain walls along arbitrary in-plane paths using a time-varying applied magnetic field with fixed orientation. In addition, this ratchet-like motion causes the domain walls to lock to discrete positions along these paths, which is useful for digital devices. As a proof-of-principle experiment we demonstrate the continuous propagation of two domain walls along a closed-loop path in a platinum/cobalt/platinum strip.


Asunto(s)
Cobalto/química , Nanotecnología , Platino (Metal)/química , Anisotropía , Campos Magnéticos , Fenómenos Magnéticos
5.
J Phys Condens Matter ; 24(2): 024216, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22173553

RESUMEN

We theoretically and experimentally analyze the pinning of a magnetic domain wall (DW) at engineered anisotropy variations in Pt/Co/Pt strips with perpendicular magnetic anisotropy. An analytical model is derived showing that a step in the anisotropy acts as an energy barrier for the DW. Quantitative measurements are performed showing that the anisotropy can be controlled by focused ion beam irradiation with Ga ions. This tool is used to experimentally study the field-induced switching of nanostrips which are locally irradiated. The boundary of the irradiated area indeed acts as a pinning barrier for the domain wall and the pinning strength increases with the anisotropy difference. Varying the thickness of the Co layer provides an additional way to tune the anisotropy, and it is shown that a thinner Co layer gives a higher starting anisotropy thereby allowing tunable DW pinning in a wider range of fields. Finally, we demonstrate that not only the anisotropy itself, but also the width of the anisotropy barrier can be tuned on the length scale of the domain wall.

6.
Nat Commun ; 3: 847, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22617287

RESUMEN

Domain wall motion in materials exhibiting perpendicular magnetic anisotropy has been the subject of intensive research because of its large potential for future spintronic devices. Recently, it has been shown that perpendicular anisotropy of thin films can be influenced by electric fields. Voltage-controlled magnetic switching has already been realized, which is envisioned to lead to low-power logic and memory devices. Here we demonstrate a radically new application of this effect, namely control of domain wall motion by electric fields. We show that an applied voltage perpendicular to a Co or CoB wire can significantly increase or decrease domain wall velocities. Velocity modification over an order of magnitude is demonstrated (from 0.4 to 4 µm s(-1)), providing a first step towards electrical control of domain wall devices. This opens up possibilities of real-time and local control of domain wall motion by electric fields at extremely low power cost.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA