Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 142(2): 203-17, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20637498

RESUMEN

N-linked glycosylation is the most frequent modification of secreted and membrane-bound proteins in eukaryotic cells, disruption of which is the basis of the congenital disorders of glycosylation (CDGs). We describe a new type of CDG caused by mutations in the steroid 5alpha-reductase type 3 (SRD5A3) gene. Patients have mental retardation and ophthalmologic and cerebellar defects. We found that SRD5A3 is necessary for the reduction of the alpha-isoprene unit of polyprenols to form dolichols, required for synthesis of dolichol-linked monosaccharides, and the oligosaccharide precursor used for N-glycosylation. The presence of residual dolichol in cells depleted for this enzyme suggests the existence of an unexpected alternative pathway for dolichol de novo biosynthesis. Our results thus suggest that SRD5A3 is likely to be the long-sought polyprenol reductase and reveal the genetic basis of one of the earliest steps in protein N-linked glycosylation.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Anomalías Múltiples/metabolismo , Dolicoles/metabolismo , Discapacidad Intelectual/metabolismo , Proteínas de la Membrana/metabolismo , Mutación , Proteínas de Saccharomyces cerevisiae/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , Animales , Butadienos/metabolismo , Consanguinidad , Embrión de Mamíferos/metabolismo , Estudio de Asociación del Genoma Completo , Glicosilación , Hemiterpenos/metabolismo , Humanos , Proteínas de la Membrana/genética , Ratones , Pentanos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Respuesta de Proteína Desplegada
2.
J Biol Chem ; 299(1): 102738, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36423686

RESUMEN

Understanding L-fucose metabolism is important because it is used as a therapy for several congenital disorders of glycosylation. Exogenous L-fucose can be activated and incorporated directly into multiple N- and O-glycans via the fucose salvage/recycling pathway. However, unlike for other monosaccharides, no mammalian L-fucose transporter has been identified. Here, we functionally screened nearly 140 annotated transporters and identified GLUT1 (SLC2A1) as an L-fucose transporter. We confirmed this assignment using multiple approaches to alter GLUT1 function, including chemical inhibition, siRNA knockdown, and gene KO. Collectively, all methods demonstrate that GLUT1 contributes significantly to L-fucose uptake and its utilization at low micromolar levels. Surprisingly, millimolar levels of D-glucose do not compete with L-fucose uptake. We also show macropinocytosis, but not other endocytic pathways, can contribute to L-fucose uptake and utilization. In conclusion, we determined that GLUT1 functions as the previously missing transporter component in mammalian L-fucose metabolism.


Asunto(s)
Fucosa , Transportador de Glucosa de Tipo 1 , Proteínas de Transporte de Membrana , Transporte Biológico , Fucosa/metabolismo , Glucosa , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo
3.
Hum Mol Genet ; 31(15): 2571-2581, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35262690

RESUMEN

The transmembrane domain recognition complex (TRC) pathway is required for the insertion of C-terminal tail-anchored (TA) proteins into the lipid bilayer of specific intracellular organelles such as the endoplasmic reticulum (ER) membrane. In order to facilitate correct insertion, the recognition complex (consisting of BAG6, GET4 and UBL4A) must first bind to TA proteins and then to GET3 (TRC40, ASNA1), which chaperones the protein to the ER membrane. Subsequently, GET1 (WRB) and CAML form a receptor that enables integration of the TA protein within the lipid bilayer. We report an individual with the homozygous c.633 + 4A>G splice variant in CAMLG, encoding CAML. This variant leads to aberrant splicing and lack of functional protein in patient-derived fibroblasts. The patient displays a predominantly neurological phenotype with psychomotor disability, hypotonia, epilepsy and structural brain abnormalities. Biochemically, a combined O-linked and type II N-linked glycosylation defect was found. Mislocalization of syntaxin-5 in patient fibroblasts and in siCAMLG deleted Hela cells confirms this as a consistent cellular marker of TRC dysfunction. Interestingly, the level of the v-SNARE Bet1L is also drastically reduced in both of these models, indicating a fundamental role of the TRC complex in the assembly of Golgi SNARE complexes. It also points towards a possible mechanism behind the hyposialylation of N and O-glycans. This is the first reported patient with pathogenic variants in CAMLG. CAMLG-CDG is the third disorder, after GET4 and GET3 deficiencies, caused by pathogenic variants in a member of the TRC pathway, further expanding this novel group of disorders.


Asunto(s)
Retículo Endoplásmico , Membrana Dobles de Lípidos , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Glicosilación , Células HeLa , Humanos , Membrana Dobles de Lípidos/análisis , Membrana Dobles de Lípidos/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas Qc-SNARE/análisis , Proteínas Qc-SNARE/metabolismo , Ubiquitinas/metabolismo
4.
Am J Hum Genet ; 108(6): 1040-1052, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33964207

RESUMEN

SLC37A4 encodes an endoplasmic reticulum (ER)-localized multitransmembrane protein required for transporting glucose-6-phosphate (Glc-6P) into the ER. Once transported into the ER, Glc-6P is subsequently hydrolyzed by tissue-specific phosphatases to glucose and inorganic phosphate during times of glucose depletion. Pathogenic variants in SLC37A4 cause an established recessive disorder known as glycogen storage disorder 1b characterized by liver and kidney dysfunction with neutropenia. We report seven individuals who presented with liver dysfunction multifactorial coagulation deficiency and cardiac issues and were heterozygous for the same variant, c.1267C>T (p.Arg423∗), in SLC37A4; the affected individuals were from four unrelated families. Serum samples from affected individuals showed profound accumulation of both high mannose and hybrid type N-glycans, while N-glycans in fibroblasts and undifferentiated iPSC were normal. Due to the liver-specific nature of this disorder, we generated a CRISPR base-edited hepatoma cell line harboring the c.1267C>T (p.Arg423∗) variant. These cells replicated the secreted abnormalities seen in serum N-glycosylation, and a portion of the mutant protein appears to relocate to a distinct, non-Golgi compartment, possibly ER exit sites. These cells also show a gene dosage-dependent alteration in the Golgi morphology and reduced intraluminal pH that may account for the altered glycosylation. In summary, we identify a recurrent mutation in SLC37A4 that causes a dominantly inherited congenital disorder of glycosylation characterized by coagulopathy and liver dysfunction with abnormal serum N-glycans.


Asunto(s)
Antiportadores/genética , Trastornos Congénitos de Glicosilación/etiología , Retículo Endoplásmico/patología , Hepatopatías/complicaciones , Proteínas de Transporte de Monosacáridos/genética , Mutación , Adulto , Niño , Preescolar , Trastornos Congénitos de Glicosilación/patología , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Genes Dominantes , Glicosilación , Humanos , Lactante , Recién Nacido , Masculino , Linaje
5.
Am J Hum Genet ; 108(11): 2130-2144, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34653363

RESUMEN

Congenital disorders of glycosylation (CDGs) form a group of rare diseases characterized by hypoglycosylation. We here report the identification of 16 individuals from nine families who have either inherited or de novo heterozygous missense variants in STT3A, leading to an autosomal-dominant CDG. STT3A encodes the catalytic subunit of the STT3A-containing oligosaccharyltransferase (OST) complex, essential for protein N-glycosylation. Affected individuals presented with variable skeletal anomalies, short stature, macrocephaly, and dysmorphic features; half had intellectual disability. Additional features included increased muscle tone and muscle cramps. Modeling of the variants in the 3D structure of the OST complex indicated that all variants are located in the catalytic site of STT3A, suggesting a direct mechanistic link to the transfer of oligosaccharides onto nascent glycoproteins. Indeed, expression of STT3A at mRNA and steady-state protein level in fibroblasts was normal, while glycosylation was abnormal. In S. cerevisiae, expression of STT3 containing variants homologous to those in affected individuals induced defective glycosylation of carboxypeptidase Y in a wild-type yeast strain and expression of the same mutants in the STT3 hypomorphic stt3-7 yeast strain worsened the already observed glycosylation defect. These data support a dominant pathomechanism underlying the glycosylation defect. Recessive mutations in STT3A have previously been described to lead to a CDG. We present here a dominant form of STT3A-CDG that, because of the presence of abnormal transferrin glycoforms, is unusual among dominant type I CDGs.


Asunto(s)
Trastornos Congénitos de Glicosilación/genética , Genes Dominantes , Hexosiltransferasas/genética , Proteínas de la Membrana/genética , Enfermedades Musculoesqueléticas/genética , Enfermedades del Sistema Nervioso/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Dominio Catalítico , Preescolar , Femenino , Heterocigoto , Hexosiltransferasas/química , Humanos , Masculino , Proteínas de la Membrana/química , Persona de Mediana Edad , Linaje , Homología de Secuencia de Aminoácido
6.
Mol Genet Metab ; 142(1): 108476, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653092

RESUMEN

We have identified 200 congenital disorders of glycosylation (CDG) caused by 189 different gene defects and have proposed a classification system for CDG based on the mode of action. This classification includes 8 categories: 1. Disorders of monosaccharide synthesis and interconversion, 2. Disorders of nucleotide sugar synthesis and transport, 3. Disorders of N-linked protein glycosylation, 4. Disorders of O-linked protein glycosylation, 5. Disorders of lipid glycosylation, 6. Disorders of vesicular trafficking, 7. Disorders of multiple glycosylation pathways and 8. Disorders of glycoprotein/glycan degradation. Additionally, using information from IEMbase, we have described the clinical involvement of 19 organs and systems, as well as essential laboratory investigations for each type of CDG. Neurological, dysmorphic, skeletal, and ocular manifestations were the most prevalent, occurring in 81%, 56%, 53%, and 46% of CDG, respectively. This was followed by digestive, cardiovascular, dermatological, endocrine, and hematological symptoms (17-34%). Immunological, genitourinary, respiratory, psychiatric, and renal symptoms were less frequently reported (8-12%), with hair and dental abnormalities present in only 4-7% of CDG. The information provided in this study, including our proposed classification system for CDG, may be beneficial for healthcare providers caring for individuals with metabolic conditions associated with CDG.


Asunto(s)
Trastornos Congénitos de Glicosilación , Humanos , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/clasificación , Trastornos Congénitos de Glicosilación/patología , Glicosilación
7.
Mol Genet Metab ; 142(2): 108472, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703411

RESUMEN

ALG13-Congenital Disorder of Glycosylation (CDG), is a rare X-linked CDG caused by pathogenic variants in ALG13 (OMIM 300776) that affects the N-linked glycosylation pathway. Affected individuals present with a predominantly neurological manifestation during infancy. Epileptic spasms are a common presenting symptom of ALG13-CDG. Other common phenotypes include developmental delay, seizures, intellectual disability, microcephaly, and hypotonia. Current management of ALG13-CDG is targeted to address patients' symptoms. To date, less than 100 individuals have been reported with ALG13-CDG. In this article, an international group of experts in CDG reviewed all reported individuals affected with ALG13-CDG and suggested diagnostic and management guidelines for ALG13-CDG. The guidelines are based on the best available data and expert opinion. Neurological symptoms dominate the phenotype of ALG13-CDG where epileptic spasm is confirmed to be the most common presenting symptom of ALG13-CDG in association with hypotonia and developmental delay. We propose that ACTH/prednisolone treatment should be trialed first, followed by vigabatrin, however ketogenic diet has been shown to have promising results in ALG13-CDG. In order to optimize medical management, we also suggest early cardiac, gastrointestinal, skeletal, and behavioral assessments in affected patients.


Asunto(s)
Trastornos Congénitos de Glicosilación , Humanos , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/terapia , Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/complicaciones , Glicosilación , Fenotipo , Mutación , Hipotonía Muscular/genética , Hipotonía Muscular/terapia , Hipotonía Muscular/diagnóstico , Guías de Práctica Clínica como Asunto , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/terapia , Lactante , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Convulsiones/genética , Convulsiones/terapia , Convulsiones/diagnóstico , N-Acetilglucosaminiltransferasas
8.
J Inherit Metab Dis ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597022

RESUMEN

ALG3-CDG is a rare congenital disorder of glycosylation (CDG) with a clinical phenotype that includes neurological manifestations, transaminitis, and frequent infections. The ALG3 enzyme catalyzes the first step of endoplasmic reticulum (ER) luminal glycan extension by adding mannose from Dol-P-Man to Dol-PP-Man5GlcNAc2 (Man5) forming Dol-PP-Man6. Such glycan extension is the first and fastest cellular response to ER stress, which is deficient in ALG3-CDG. In this study, we provide evidence that the unfolded protein response (UPR) and ER-associated degradation activities are increased in ALG3-CDG patient-derived cultured skin fibroblasts and there is constitutive activation of UPR mediated by the IRE1-α pathway. In addition, we show that N-linked Man3-4 glycans are increased in cellular glycoproteins and secreted plasma glycoproteins with hepatic or non-hepatic origin. We found that like other CDGs such as ALG1- or PMM2-CDG, in transferrin, the assembling intermediate Man5 in ALG3-CDG, are likely further processed into a distinct glycan, NeuAc1Gal1GlcNAc1Man3GlcNAc2, probably by Golgi mannosidases and glycosyltransferases. We predict it to be a mono-antennary glycan with the same molecular weight as the truncated glycan described in MGAT2-CDG. In summary, this study elucidates multiple previously unrecognized biochemical consequences of the glycan extension deficiency in ALG3-CDG which will have important implications in the pathogenesis of CDG.

9.
J Med Genet ; 60(7): 627-635, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36357165

RESUMEN

BACKGROUND: Enzymes of the Golgi implicated in N-glycan processing are critical for brain development, and defects in many are defined as congenital disorders of glycosylation (CDG). Involvement of the Golgi mannosidase, MAN2A2 has not been identified previously as causing glycosylation defects. METHODS: Exome sequencing of affected individuals was performed with Sanger sequencing of the MAN2A2 transcript to confirm the variant. N-glycans were analysed in patient-derived lymphoblasts to determine the functional effects of the variant. A cell-based complementation assay was designed to assess the pathogenicity of identified variants using MAN2A1/MAN2A2 double knock out HEK293 cell lines. RESULTS: We identified a multiplex consanguineous family with a homozygous truncating variant p.Val1101Ter in MAN2A2. Lymphoblasts from two affected brothers carrying the same truncating variant showed decreases in complex N-glycans and accumulation of hybrid N-glycans. On testing of this variant in the developed complementation assay, we see the complete lack of complex N-glycans. CONCLUSION: Our findings show that pathogenic variants in MAN2A2 cause a novel autosomal recessive CDG with neurological involvement and facial dysmorphism. Here, we also present the development of a cell-based complementation assay to assess the pathogenicity of MAN2A2 variants, which can also be extended to MAN2A1 variants for future diagnosis.


Asunto(s)
Trastornos Congénitos de Glicosilación , Masculino , Humanos , Glicosilación , Células HEK293 , Homocigoto , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Polisacáridos/metabolismo , Manosidasas/metabolismo
10.
Annu Rev Neurosci ; 38: 105-25, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-25840006

RESUMEN

This review presents principles of glycosylation, describes the relevant glycosylation pathways and their related disorders, and highlights some of the neurological aspects and issues that continue to challenge researchers. More than 100 rare human genetic disorders that result from deficiencies in the different glycosylation pathways are known today. Most of these disorders impact the central and/or peripheral nervous systems. Patients typically have developmental delays/intellectual disabilities, hypotonia, seizures, neuropathy, and metabolic abnormalities in multiple organ systems. Among these disorders there is great clinical diversity because all cell types differentially glycosylate proteins and lipids. The patients have hundreds of misglycosylated products, which afflict a myriad of processes, including cell signaling, cell-cell interaction, and cell migration. This vast complexity in glycan composition and function, along with the limited availability of analytic tools, has impeded the identification of key glycosylated molecules that cause pathologies. To date, few critical target proteins have been pinpointed.


Asunto(s)
Trastorno Autístico/metabolismo , Trastornos Congénitos de Glicosilación/complicaciones , Trastornos Congénitos de Glicosilación/metabolismo , Epilepsia/metabolismo , Oftalmopatías/metabolismo , Discapacidad Intelectual/metabolismo , Polisacáridos/metabolismo , Animales , Trastorno Autístico/complicaciones , Biomarcadores/metabolismo , Epilepsia/complicaciones , Oftalmopatías/complicaciones , Glicosaminoglicanos/metabolismo , Glicosilación , Humanos , Discapacidad Intelectual/complicaciones
11.
J Inherit Metab Dis ; 46(1): 92-100, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36214423

RESUMEN

Congenital disorders of glycosylation (CDG) are a group of heterogeneous inherited metabolic disorders affecting posttranslational protein modification. DDOST-CDG, caused by biallelic pathogenic variants in DDOST which encodes dolichyl-diphospho-oligosaccharide-protein glycosyltransferase, a subunit of N-glycosylation oligosaccharyltransferase (OST) complex, is an ultra-rare condition that has been described in two patients only. The main clinical features in the two reported patients include profound developmental delay, failure to thrive, and hypotonia. In addition, both patients had abnormal transferrin glycosylation. Here, we report an 18-year-old male who presented with moderate developmental delay, progressive opsoclonus, myoclonus, ataxia, tremor, and dystonia. Biochemical studies by carbohydrate deficient transferrin analysis showed a type I CDG pattern. Exome sequencing identified compound heterozygous variants in DDOST: a maternally inherited variant, c.1142dupT (p.Leu381Phefs*11), and a paternally inherited variant, c.661 T > C (p.Ser221Pro). Plasma N-glycan profiling showed mildly increased small high mannose glycans including Man0-5 GlcNAc2, a pattern consistent with what was previously reported in DDOST-CDG or defects in other subunits of OST complex. Western blot analysis on patient's fibroblasts revealed decreased expression of DDOST and reduced intracellular N-glycosylation, as evident by the biomarkers ICAM-1 and LAMP2. Our study highlights the clinical variability, expands the clinical and biochemical phenotypes, and describes new genotype, which all are essential for diagnosing and managing patients with DDOST-CDG.


Asunto(s)
Trastornos Congénitos de Glicosilación , Trastornos del Movimiento , Masculino , Humanos , Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/patología , Glicosilación , Fenotipo , Genotipo
12.
J Inherit Metab Dis ; 46(6): 1170-1185, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37540500

RESUMEN

CAD is a large, 2225 amino acid multienzymatic protein required for de novo pyrimidine biosynthesis. Pathological CAD variants cause a developmental and epileptic encephalopathy which is highly responsive to uridine supplements. CAD deficiency is difficult to diagnose because symptoms are nonspecific, there is no biomarker, and the protein has over 1000 known variants. To improve diagnosis, we assessed the pathogenicity of 20 unreported missense CAD variants using a growth complementation assay that identified 11 pathogenic variants in seven affected individuals; they would benefit from uridine treatment. We also tested nine variants previously reported as pathogenic and confirmed the damaging effect of seven. However, we reclassified two variants as likely benign based on our assay, which is consistent with their long-term follow-up with uridine. We found that several computational methods are unreliable predictors of pathogenic CAD variants, so we extended the functional assay results by studying the impact of pathogenic variants at the protein level. We focused on CAD's dihydroorotase (DHO) domain because it accumulates the largest density of damaging missense changes. The atomic-resolution structures of eight DHO pathogenic variants, combined with functional and molecular dynamics analyses, provided a comprehensive structural and functional understanding of the activity, stability, and oligomerization of CAD's DHO domain. Combining our functional and protein structural analysis can help refine clinical diagnostic workflow for CAD variants in the genomics era.


Asunto(s)
Dihidroorotasa , Proteínas , Humanos , Dihidroorotasa/química , Dihidroorotasa/genética , Dihidroorotasa/metabolismo , Mutación Missense , Uridina
13.
J Inherit Metab Dis ; 46(2): 326-334, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36719165

RESUMEN

Congenital disorders of glycosylation (CDG) and Niemann-Pick type C (NPC) disease are inborn errors of metabolism that can both present with infantile-onset severe liver disease and other multisystemic manifestations. Plasma bile acid and N-palmitoyl-O-phosphocholineserine (PPCS) are screening biomarkers with proposed improved sensitivity and specificity for NPC. We report an infant with ATP6AP1-CDG who presented with cholestatic liver failure and elevated plasma oxysterols and bile acid, mimicking NPC clinically and biochemically. On further investigation, PPCS, but not the bile acid derivative N-(3ß,5α,6ß-trihydroxy-cholan-24-oyl) glycine (TCG), were elevated in plasma samples from individuals with ATP6AP1-, ALG1-, ALG8-, and PMM2-CDG. These findings highlight the importance of keeping CDG within the diagnostic differential when evaluating children with early onset severe liver disease and elevated bile acid or PPCS to prevent delayed diagnosis and treatment.


Asunto(s)
Trastornos Congénitos de Glicosilación , Enfermedad de Niemann-Pick Tipo C , Oxiesteroles , ATPasas de Translocación de Protón Vacuolares , Lactante , Niño , Humanos , Glicosilación , Ácidos y Sales Biliares , Hidrolasas
14.
J Inherit Metab Dis ; 46(2): 300-312, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36651831

RESUMEN

ATP6AP1-CDG is an X-linked disorder typically characterized by hepatopathy, immunodeficiency, and an abnormal type II transferrin glycosylation pattern. Here, we present 11 new patients and clinical updates with biochemical characterization on one previously reported patient. We also document intrafamilial phenotypic variability and atypical presentations, expanding the symptomatology of ATP6AP1-CDG to include dystonia, hepatocellular carcinoma, and lysosomal abnormalities on hepatic histology. Three of our subjects received successful liver transplantation. We performed N-glycan profiling of total and fractionated plasma proteins for six patients and show associations with varying phenotypes, demonstrating potential diagnostic and prognostic value of fractionated N-glycan profiles. The aberrant N-linked glycosylation in purified transferrin and remaining plasma glycoprotein fractions normalized in one patient post hepatic transplant, while the increases of Man4GlcNAc2 and Man5GlcNAc2 in purified immunoglobulins persisted. Interestingly, in the single patient with isolated immune deficiency phenotype, elevated high-mannose glycans were detected on purified immunoglobulins without glycosylation abnormalities on transferrin or the remaining plasma glycoprotein fractions. Given the diverse and often tissue specific clinical presentations and the need of clinical management post hepatic transplant in ATP6AP1-CDG patients, these results demonstrate that fractionated plasma N-glycan profiling could be a valuable tool in diagnosis and disease monitoring.


Asunto(s)
Trastornos Congénitos de Glicosilación , ATPasas de Translocación de Protón Vacuolares , Humanos , Trastornos Congénitos de Glicosilación/genética , Glicoproteínas/metabolismo , Transferrina/metabolismo , Fenotipo , Polisacáridos , Hidrolasas/genética , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética
15.
J Inherit Metab Dis ; 46(6): 1195-1205, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37711075

RESUMEN

Biallelic variants in genes for seven out of eight subunits of the conserved oligomeric Golgi complex (COG) are known to cause recessive congenital disorders of glycosylation (CDG) with variable clinical manifestations. COG3 encodes a constituent subunit of the COG complex that has not been associated with disease traits in humans. Herein, we report two COG3 homozygous missense variants in four individuals from two unrelated consanguineous families that co-segregated with COG3-CDG presentations. Clinical phenotypes of affected individuals include global developmental delay, severe intellectual disability, microcephaly, epilepsy, facial dysmorphism, and variable neurological findings. Biochemical analysis of serum transferrin from one family showed the loss of a single sialic acid. Western blotting on patient-derived fibroblasts revealed reduced COG3 and COG4. Further experiments showed delayed retrograde vesicular recycling in patient cells. This report adds to the knowledge of the COG-CDG network by providing collective evidence for a COG3-CDG rare disease trait and implicating a likely pathology of the disorder as the perturbation of Golgi trafficking.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Trastornos Congénitos de Glicosilación , Humanos , Glicosilación , Proteínas Adaptadoras del Transporte Vesicular/genética , Fibroblastos/metabolismo , Trastornos Congénitos de Glicosilación/genética , Fenotipo
16.
J Med Genet ; 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35790351

RESUMEN

PURPOSE: To summarise the clinical, molecular and biochemical phenotype of mannosyl-oligosaccharide glucosidase-related congenital disorders of glycosylation (MOGS-CDG), which presents with variable clinical manifestations, and to analyse which clinical biochemical assay consistently supports diagnosis in individuals with bi-allelic variants in MOGS. METHODS: Phenotypic characterisation was performed through an international and multicentre collaboration. Genetic testing was done by exome sequencing and targeted arrays. Biochemical assays on serum and urine were performed to delineate the biochemical signature of MOGS-CDG. RESULTS: Clinical phenotyping revealed heterogeneity in MOGS-CDG, including neurological, immunological and skeletal phenotypes. Bi-allelic variants in MOGS were identified in 12 individuals from 11 families. The severity in each organ system was variable, without definite genotype correlation. Urine oligosaccharide analysis was consistently abnormal for all affected probands, whereas other biochemical analyses such as serum transferrin analysis was not consistently abnormal. CONCLUSION: The clinical phenotype of MOGS-CDG includes multisystemic involvement with variable severity. Molecular analysis, combined with biochemical testing, is important for diagnosis. In MOGS-CDG, urine oligosaccharide analysis via matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry can be used as a reliable biochemical test for screening and confirmation of disease.

17.
Biochem Biophys Res Commun ; 632: 165-172, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36209585

RESUMEN

N-glycanase 1(NGLY1) catalyzes the removal of N-linked glycans from newly synthesized or misfolded protein. NGLY1 deficiency is a recently diagnosed rare genetic disorder. The affected individuals present a broad spectrum of clinical features. Recent studies explored several possible molecular mechanisms of NGLY1 deficiency including defects in proteostasis, mitochondrial homeostasis, innate immunity, and water/ion transport. We demonstrate abnormal accumulation of endoplasmic reticulum-associated degradation (ERAD) substrates in NGLY1-deficient cells. Global quantitative proteomics discovered elevated levels of endogenous proteins in NGLY1-defective human and mouse cells. Further biological validation assays confirmed the altered abundance of several key candidates that were subjected to isobarically labeled proteomic analysis. CCN2 was selected for further analysis due to its significant increase in different cell models of NGLY1 deficiency. Functional assays show elevated CCN2 and over-stimulated TGF-ß signaling in NGLY1-deficient cells. Given the important role of CCN2 and TGF-ß pathway in mediating systemic fibrosis, we propose a potential link of increased CCN2 and TGF-ß signaling to microscopic liver fibrosis in NGLY1 patients.


Asunto(s)
Trastornos Congénitos de Glicosilación , Factor de Crecimiento del Tejido Conjuntivo , Degradación Asociada con el Retículo Endoplásmico , Animales , Humanos , Ratones , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Degradación Asociada con el Retículo Endoplásmico/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Polisacáridos/metabolismo , Proteómica , Factor de Crecimiento Transformador beta/metabolismo , Agua/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo
18.
Clin Genet ; 102(6): 530-536, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35932216

RESUMEN

Biallelic pathogenic variants in the genes encoding the dolichol-phosphate mannose synthase subunits (DPM) which produce mannosyl donors for glycosylphosphatidylinositols, N-glycan and protein O- and C-mannosylation, are rare causes of congenital disorders of glycosylation. Pathogenic variants in DPM1 and DPM2 are associated with muscle-eye-brain (MEB) disease, whereas DPM3 variants have mostly been reported in patients with isolated muscle disease-dystroglycanopathy. Thus far, only one affected individual with compound heterozygous DPM3 variants presenting with myopathy, mild intellectual disability, seizures, and nonspecific white matter abnormalities (WMA) around the lateral ventricles has been described. Here we present five affected individuals from four unrelated families with global developmental delay/intellectual disability ranging from mild to severe, microcephaly, seizures, WMA, muscle weakness and variable cardiomyopathy. Exome sequencing of the probands revealed an ultra-rare homozygous pathogenic missense DPM3 variant NM_018973.4:c.221A>G, p.(Tyr74Cys) which segregated with the phenotype in all families. Haplotype analysis indicated that the variant arose independently in three families. Functional analysis did not reveal any alteration in the N-glycosylation pathway caused by the variant; however, this does not exclude its pathogenicity in the function of the DPM complex and related cellular pathways. This report provides supporting evidence that, besides DPM1 and DPM2, defects in DPM3 can also lead to a muscle and brain phenotype.


Asunto(s)
Encefalopatías , Discapacidad Intelectual , Humanos , Discapacidad Intelectual/patología , Homocigoto , Músculo Esquelético/patología , Encefalopatías/patología , Convulsiones/patología , Manosiltransferasas/genética , Proteínas de la Membrana/genética
19.
J Inherit Metab Dis ; 45(5): 969-980, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35716054

RESUMEN

Congenital disorders of glycosylation are a continuously expanding group of monogenic disorders of glycoprotein and glycolipid glycan biosynthesis. These disorders mostly manifest with multisystem involvement. Individuals with ALG8-CDG commonly present with hypotonia, protein-losing enteropathy, and hepatic involvement. Here, we describe seven unreported individuals diagnosed with ALG8-CDG based on biochemical and molecular testing and we identify nine novel variants in ALG8, bringing the total to 26 individuals with ALG8-CDG in the medical literature. In addition to the typical multisystem involvement documented in ALG8-CDG, our cohort includes the two oldest patients reported and further expands the phenotype of ALG8-CDG to include stable intellectual disability, autism spectrum disorder and other neuropsychiatric symptoms. We further expand the clinical features in a variety of organ systems including ocular, musculoskeletal, dermatologic, endocrine, and cardiac abnormalities and suggest a comprehensive evaluation and monitoring strategy to improve clinical management.


Asunto(s)
Trastorno del Espectro Autista , Trastornos Congénitos de Glicosilación , Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/terapia , Glucosiltransferasas/genética , Glicosilación , Humanos , Fenotipo
20.
J Biol Chem ; 295(48): 16445-16463, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-32938718

RESUMEN

Nucleotide sugar transporters, encoded by the SLC35 gene family, deliver nucleotide sugars throughout the cell for various glycosyltransferase-catalyzed glycosylation reactions. GlcNAc, in the form of UDP-GlcNAc, and galactose, as UDP-Gal, are delivered into the Golgi apparatus by SLC35A3 and SLC35A2 transporters, respectively. However, although the UDP-Gal transporting activity of SLC35A2 has been clearly demonstrated, UDP-GlcNAc delivery by SLC35A3 is not fully understood. Therefore, we analyzed a panel of CHO, HEK293T, and HepG2 cell lines including WT cells, SLC35A2 knockouts, SLC35A3 knockouts, and double-knockout cells. Cells lacking SLC35A2 displayed significant changes in N- and O-glycan synthesis. However, in SLC35A3-knockout CHO cells, only limited changes were observed; GlcNAc was still incorporated into N-glycans, but complex type N-glycan branching was impaired, although UDP-GlcNAc transport into Golgi vesicles was not decreased. In SLC35A3-knockout HEK293T cells, UDP-GlcNAc transport was significantly decreased but not completely abolished. However, N-glycan branching was not impaired in these cells. In CHO and HEK293T cells, the effect of SLC35A3 deficiency on N-glycan branching was potentiated in the absence of SLC35A2. Moreover, in SLC35A3-knockout HEK293T and HepG2 cells, GlcNAc was still incorporated into O-glycans. However, in the case of HepG2 cells, no qualitative changes in N-glycans between WT and SLC35A3 knockout cells nor between SLC35A2 knockout and double-knockout cells were observed. These findings suggest that SLC35A3 may not be the primary UDP-GlcNAc transporter and/or different mechanisms of UDP-GlcNAc transport into the Golgi apparatus may exist.


Asunto(s)
Glicosiltransferasas/metabolismo , Aparato de Golgi/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo , Polisacáridos/biosíntesis , Animales , Células CHO , Cricetulus , Técnicas de Silenciamiento del Gen , Glicosiltransferasas/genética , Aparato de Golgi/genética , Células HEK293 , Células Hep G2 , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas de Transporte de Nucleótidos/genética , Polisacáridos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA